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1.0 INTRODUCTION

The Hydrocarbon-Fuel/Combustion-Chamber-Liner Materials Compatibility
Program has three major technical objectives. They are (1) to define the corrosive inter-
action process that occurs between hydrocarbon fuels and candidate combustion cham-
ber liner materials, (2) to develop and evaluate protective measures to remedy the
defined corrosive interaction process, and (3) to recommend a test program which will
verify the validity of the measures under actual service conditions. A four-task pro-
gram is being conducted to achieve these program objectives, i.e., Task 1 — Corrosive
Interaction and Rates Determination, Task 2 — Protective Measures Development and
Evaluation, Task 3 — Protective Measures Verification Program, and Task 4 —
Reporting Requirements.

This interim final report covers the period from 7 November 1986 through
31 October 1989. The original scope of work of the program was completed during this
period. A contract modification to perform additional research was finalized on
7 August 1989. It extended the period of performance on the contract to 7 April 1991. A
final report covering the entire period of performance on the contract will be issued
upon completion of this work.

RPT/D0406.54/1.0-3.1 1



2.0 SUMMARY

Material compatibility studies were conducted between hydrocarbon fuels and
copper chamber liner materials. The hydrocarbon fuels tested were MIL-Spec RP-1, n-
dodecane, propane, and methane. The copper chamber liner materials tested were
OFHC, NASA-Z, and Zirconium Copper. Two distinct methods were employed. Static
tests, in which copper coupons were exposed to fuel for long durations at constant
temperature and pressure, were used to provide compatibility data in precisely con-
trolled environments. Dynamic tests, using the Aerojet Carbothermal Test Facility,
were conducted to provide fuel and copper compatibility data under realistic booster
engine service conditions. Dynamic test conditions simulated the heat flux, coolant
channel wall temperature, fuel velocity, temperature, and pressure expected in the
cooling channels of a regeneratively cooled LOX/hydrocarbon booster engine operating
at chamber pressures up to 3000 psia. Tests were conducted using (1) very pure grades
of each fuel and (2) fuels to which a contaminant, e.g., ethylene, methyl mercaptan,
hydrogen sulfide, etc., was added to define the role played by fuel impurities.

This material compatibility research was motivated, in part, by prior work con-
ducted by United Technologies Research Center and Rockwell International
Rocketdyne Division (Ref. 1, 2, 3). In these programs, severe copper corrosion and car-
bon deposition were encountered during this conduct of electrically heated tube tests.
These results had very important implications for the development of long-life oxy-
gen/hydrocarbon booster engines. Thus, the first two objectives of the current program
are (1) to define the corrosive interaction process that occurs between hydrocarbon fuels
and copper combustion chamber liner materials, and (2) to develop and demonstrate
protective measures against this corrosive process.

In Task 1 of this program, compatibility tests were conducted between hydrocar-
bon fuels and copper chamber liner materials. It was found that each of the copper
materials exhibited similar compatibility behavior. However, there were significant dif-
ferences among the various hydrocarbon fuels tested. Table 1 summarizes the test
results obtained in Task 1 of this program.

RPT/DO0406.54/1.0-3.1 2



TABLE 1

A SUMMARY OF EXPERIMENTAL RESULTS

RP-1 Methane Propane
Carbon Yes No No
Containing Above Twal Up to Twall Up to Twall
Deposits 580 F 934 F 865 F
Copper Yes* Yes* Yes*

Corrosion With50ppmS  Downto1ppm$S In All Tests

*Copper corrosion occurs only when sulfur is present in these fuels.
Cuprous sulfide is the corrosion product.

RI"T/D0406 54-T



2.0, Summary (cont.)

Task 1 tests with RP-1 and n-dodecane demonstrated a deposition reaction occurs
when the surface temperature of the copper exceeded 580 F. The result of this deposi-
tion process was the formation of a chemically complex, thin, but very tenacious, tar on
all exposed copper surfaces, as seen in the photomicrographs shown in Figure 1. This
tar inhibited heat transfer, but had little effect on the flowrate or pressure drop through
the channel during the dynamic tests. A corrosive reaction between the fuel and the
copper was also demonstrated with RP-1 when 50 ppm (by weight) sulfur was added to
the fuel in the form of n-dodecanethiol. The copper cooling channels reacted with the
sulfur impurity to form cuprous sulfide (Cu;S). This corrosive process roughened the
copper surfaces, as seen in Figure 2, and substantially increased the pressure drop
through the cooling channel. It did not have a major impact on the heat transfer
characteristics of the channel.

In contrast, Task 1 tests with methane did not show any deposition reactions, even
at copper surface temperatures up to 934 F. Figure 3 documents that, even at high
magnification, no changes were observed on the surface of the dynamic test specimen.
However, severe corrosion of copper was observed when very small amounts of sulfur
impurities (e.g., 1 ppm of methyl mercaptan) were added to the methane. Figure 4
shows the subsurface gouges formed in the channel surface during a dynamic test with
methane plus 1 ppm methyl mercaptan. In two tests conducted with a relatively high
concentration of methyl mercaptan in the methane (200 and 10 ppm, respectively) the
formation of corrosion product (Cu,S) became so massive as to block entirely the flow
of fuel through the channel.

Task 1 tests with propane did not show any carbon deposition, even at copper sur-
face temperatures up to 865 F. However, corrosion of copper by sulfur compounds was
observed in every test with propane, and resulted in the formation of powdery black
deposits of Cu3S on the channel surfaces, such as shown in Figure 5. Samples of the
propane used in the testing were analyzed by industrial and university laboratories in
an attempt to characterize the impurities causing the corrosion. No sulfur compounds
could be detected in the gas phase of the propane, even when using very sensitive
analytical methods reportedly accurate to levels as low as 50 parts per billion. The
inability of the analytical method to identify the source of contamination observed in

RI'T/Di406.54/1.0-3.1 4
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2.0, Summary (cont.)

the propane tests indicates representative samples of the propane could not be
delivered to the analytical device. Parametric testing with the propane confirmed
earlier results reported by UTRC, i.e., the velocity and inlet temperature of the propane
were significant factors in the amount of corrosion product formed in the channel.

Task 2 tests demonstrated the efficacy of metallic coatings as a means of corrosion
protection for the cooling channels. Static tests established the nobility of six metals in a
high pressure, high temperature environment of methane plus relatively high concen-
trations of sulfur compounds. Two of the six metals, i.e., gold and platinum, were
selected for further study. Dynamic test specimen were fabricated and the test channels
were protected by a thin layer of electrodeposited gold or platinum. The specimen were
subjected to dynamic tests at realistic booster engine conditions while operating with
methane coolant containing 5 ppm (by vol) methyl mercaptan. Additional tests were
conducted with 5 ppm (by vol) hydrogen sulfide. Corrosion of the cooling channels
was effectively reduced by the gold and platinum coatings. Figure 6 compares the
condition of the copper cooling channel surface in similar tests conducted with and
without the protective coating.

In Task 3, a program plan was developed which called for the fabrication and
testing of a 40,000 IbF thrust chamber with copper cooling channels protected from cor-
rosion with a metallic coating, e.g., gold. Tests were described in which the chamber is
to be cooled with (1) sulfur-free methane and (2) methane containing a measured
amount of sulfur contaminant to demonstrate the effectiveness of the coatings in
extending the useable chamber life in booster engines to be used in recoverable, reuse-
able vehicles.

RPT/D040654/1.0-3.1 10
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3.0 TASK1— CORROSIVE INTERACTION AND CORROSION RATE
DETERMINATION

The objective of Task 1 was to conduct an investigation which would result in a
definition of the corrosive interaction process and a determination of the corrosion rates
that occur in the reactions between hydrocarbon fuels and copper, alloyed and unal-
loyed. The specific fuels and materials which were investigated in Task 1 are listed in
Table 2. General guidelines for the performance of Task 1 are listed in Table 3. This
section of the report discusses the results of Task 1: a discussion of the test methods and
procedures used in the conduct of this investigation is followed by a presentation of the
results of experiments with RP-1, n-dodecane, methane, and propane, respectively.

3.1 TEST METHODS

This section describes the test apparatus, test procedures, and analytical
methods which were used in the static and dynamic tests of this program. The static
test methods are described first, followed by a review of the dynamic test facility and
procedures. A third section is devoted to a description of the chemical analyses of the
fuels used in this program.

3.1.1 Static Test Methods

Two static test methods were used to study the compatibility of
hydrocarbon fuels with copper in a carefully controlled environment. Sealed Glass
conducted with methane and propane. The Sealed Glass Ampul Test offers the advan-
tage of visual observation of the fuel/specimen sample throughout the course of the
test, but its applicability is limited to low pressure tests with comparatively nonvolatile
fuels. The Aminco Bomb Test offers the advantage of testing at high pressure, but it is
best suited to the evaluation of comparatively volatile fuels.

In the Sealed Glass Ampul Test, the fuel and metallic coupons were
loaded in an ampul as depicted in Figure 7. The sealed ampul was then heated to 400 F
in a constant temperature oven for 14 days. Figure 8 shows a trace of the temperature in
the oven during the test period. After removal from the oven, the ampules were opened
into a measured volume, so that any pressure rise attributable to the formation of
volatile reaction products, such as light hydrocarbons or hydrogen, could be measured.

RPT/D0406.54/1.0-3.1 12



TABLE2

HYDROCARBON-FUEL/COMBUSTION-CHAMBER-LINER
MATERIALS COMPATIBILITY PROGRAM FUELS AND MATERIALS

Fuels Temperature Range of Interest
RP-1a 273.16 t0 616.49 K (32 to 650 F)
Propane 90.39 to 616.49 K (-297 to 650 F)

Methane 111.66 to 616.49 K (-258.7 to 650 F)

an-Dodecane was used for comparative purposes.

Copper Base Materialsb

OFHC Copper
Amzirc (copper, 0.15 wt % zirconium)
NASA-Z (copper, 3 wt % silver, 0.5 wt % zirconium)

bAll of the material noted was provided by the Government in the forged and annealed
condition.

RI'T/D0406.54-T 13



TABLE 3

HYDROCARBON-FUEL/COMBUSTION-CHAMBER-LINER
MATERIALS COMPATIBILITY PROGRAM GENERAL GUIDELINES

Engine Definition

Thrust Level
Chamber Pressure
Cycle

Number of Flights

RPT/DO40654-T

3,336 kN (750,000 1bF)
20,684 kPa (3,000 psia)
Gas Generator

50
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3.1, Test Methods (cont.)

The gas and liquid phases of the ampul were analyzed for hydrogen and hydrocarbons
by gas chromatography. The metallic coupons were weighed and examined with
optical and scanning electron microscopes.

The coupons used in the Sealed Glass Ampul Test were cut by EDM
from 0.020-in. thick sheet. The material was made by cold rolling pieces cut from billets
of OFHC, Amzirc, and NASA-Z supplied by NASA-LeRC. The coupons were cut into
0.25 x 1.0-in. rectangles which were cleaned, weighed, and photographed before they
were placed in the ampules. The surface of each specimen was also examined under a
scanning electron microscope (SEM) and micrographs were taken of a point on the
middle of the surface of each coupon at 200, 400, and 2000x prior to the tests. When the
coupons were removed from the ampules, they were immediately weighed and pho-
tographed, and posttest micrographs were taken of the same spot on the surface, again
at 200, 400, and 2000x.

7 In the Aminco Bomb Tests, the fuel and metallic coupons were sealed
in a high pressure vessel using the filling system shown in Figure 9. The bomb was
heated to 650 F in an oven and held at this temperature for 30 min. Upon removal from
the oven, the bomb was cooled in a water bath. Figure 10 shows a trace of the
temperature and pressure in the bomb during a typical test. After cooling to ambient
temperature, samples of the gas phase of the bomb were taken and analyzed for hydro-
gen and hydrocarbons by gas chromatography. The metallic coupons were weighed
and examined with optical and scanning electron microscopes.

The coupons used in the Aminco Bomb Tests were punched from
0.020-in. thick rolled sheet. The coupons were 15/16-in. dia circles with a 1/8-in. hole in
the center. Each coupon was cleaned, weighed, and photographed before the test. The
surface of each specimen was examined under a SEM and micrographs were taken of a
point on the middle of the surface of each coupon at 200, 400 and 2000x prior to the
tests. After cleaning and inspection, the coupons were suspended on a Type 34755 rack,
and the entire assembly sealed and leak tested with nitrogen. After passing the leak
test, the bomb was evacuated to < 1 torr for a minimum of 30 min. The bomb was then
filled with fuel plus the appropriate additives and heated. When the coupons were
removed from the bomb after testing, they were immediately weighed and

RPT/D0406.54/1.0-3.1 1 7



si1sa] Jnels auedo.ld pue aueyjep uj pasn sneseddy Buipeo quog g ainbiy

Aiddng sex)

[ossaA
ainssaig

—

Nue | \/ \J
pajeiqiied

JUBA

< | , | %M OVA

>H

<]

18



Bysd ‘ainssaid sen

saoe.] ainjesadwa) pue ainssald 1sa1 quog d1els jeaidAL ‘01 2.nbid

sajnuw ‘aw) ]
(118 ori (1748 001 (1]} oy (114 0
1 * 1 1 ‘ ] i 1 °
0+ 3 3
- e
S Y 001
3 3
o a
005 - 5 5
3 3
[ [
m 73
nUP Wo. — 002
0001
~00¢
00S1 -
- 00Y
0002
—00S
00SZ
~ 009
000¢ -
gl wdd ggs - auBYldW
ZOZW uny - 00

4 ‘aunjesadwia | seH

19



3.1, Test Methods (cont.)

photographed, and posttest micrographs were taken of the same spot on the surface,
again at 200, 400, and 2000x.

Appendix A of this report details the procedures used to load and
unload the Glass Ampules and the Aminco Bomb.

3.1.2 Dynamic Test Methods

Dynamic tests were conducted in the Aerojet Carbothermal Test
Facility with four hydrocarbon fuels, Mil-Spec RP-1, n-dodecane, as a hxgh-purlty simu-
lant for RP-1, methane, and propane, and three copper chamber materials, OFHC,
NASA-Z (3% Ag, 0.5% Zr), and Amzirc (0.15% Zr). Figure 11 presents a schematic
diagram of the dynamic test apparatus.

The apparatus incorporates two fuel delivery subsystems, one for

high-pressure methane, the other for RP-1, n-dodecane, and propane. The RP-1 and n-
dodecane were tested at ambient temperature inlet conditions. The methane and
propane were subcooled to between -200 and -100 F enroute to the heated copper test
specimen. The test specimen was heated within the Aerojet Carbothermal Materials

Tester without the use of direct ohmic heating. The apparatus incorporates appropriate
 filters, thermocouples, pressure transducers, propellant thermal conditioners, and mass
: flowmeters to control and measure the test conditions and record the test data on-line.
A port is incorporated to provide on-line fuel samples for chemlcal analy51s

Figure 12 pféSents a conceptual diagram of the Aerojet Carbothermal
Materials Tester. It utilizes a large copper block which is heated by ten electrically
insulated cartridge heaters embedded in the block. The heat input into the block is
transferred by conduction through a test specimen made of the copper material to be
tested. The heat is then w1thdrawn through a 0. 020-m square cooling channel milled in
the bottom of each specimen by fuel flowing through the channel. Figure 13 shows
photographs of a typical test specimen used in the Aerojet Carbothermal Materials
Tester.

Realistic simulations of coolmg channel condmons were produced in this facility
without the use of direct ohmic heatmg of the specimen. Table 4 compares

RPT/D0406.54/1.0-3.1 2 0
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The Geometric Concentration of Energy Is an
Alternative to Ohmically Heated Test Specimens

Figure 12. Conceptual Design of Aerojet Carbothermal Materials Tester
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TABLE 4

REALISTIC COOLING CHANNEL CONDITIONS WERE PRODUCED IN
THE AEROJET CARBOTHERMAL MATERIALS TEST FACILITY

Wall Temperature, F

Max Coolant-Side q/ A, Btu/in.2-s
Coolant Pressure, psia

Coolant Velocity, ft/s

Bulk Temperature, F

Test Duration, sec

RPT/DO0406.54-T

Methane Test
Conditions
650-930
52

. 4200
100 — 1000

-150 — +380
1000 - 1800

24

STBE
Design
800
51
4400
300 — 500
-200 — +70
160/mission



3.1, Test Methods (cont.)

channel conditions produced in the methane tests with design conditions for the STBE
methane engine. Note that each of the relevant design parameters were reproduced,
including wall temperature, fuel temperature and pressure, fuel velocity, and heat flux
through the channel wall.

Another advantage provided by the Aerojet Carbothermal Materials
Tester is that examination of the test specimen can be accomplished directly without
disturbing the surfaces which were in contact with the fuel. The RP-1 tests used a sim-
ple stainless steel fuel manifold pressed into the bottom of the test specimen to close out
the channel. After the test, separation of the specimen from the manifold exposed the
channel directly. The higher thermal strains encountered in the methane and propane
tests required that the channel be closed out with a thin sheet (0.020 in.) of OFHC cop-
per welded around the channel. After testing, a simple end mill operation opened the
channel for examination without disturbing either the specimen channel on the closeout
which had been exposed to the flowing fuel. This also provided the opportunity to
obtain simultaneous compatibility data with OFHC (via the closeout sheet) and ZrCu or
NASA-Z (via the machined specimen).

All dynamic test specimen were machined from the billets of material
supplied by NASA-LeRC. As in the static tests, all dynamic specimens were cleaned,
and photographed prior to testing. SEM photomicrographs of the channel surfaces
before testing were taken on three specimens selected at random. No discernable
difference was found among these specimen, and it was assumed they were
representative of all specimen channels before testing.

Appendix B presents the Test Area checklist which was used in the
conduct of the dynamic tests. This checklist describes the sequence of operation that
was typically used to conduct a dynamic test.

Each dynamic test was run at a constant wall temperature, as mea-
sured by four thermocouples along the channel wall. To achieve this, the power going
to the heaters in the Aerojet Carbothermal Materials Tester was manually adjusted
during the test with a potentiometer. This was particularly important during testing
with RP-1, where the heat transfer performance of the specimen declined by as much as
30% during the course of some tests.

RPT/D0406.54/1.0-3.1
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3.1, Test Methods (cont.)

Data were collected from the on-line instrumentation of the system
through a Daytronics data acquisition system, and stored every 5 sec on an IBM-AT. A
data reduction program was written to calculate test conditions and to analyze the
hydraulic and heat transfer performance of the specimen during the test. A listing of
the data reduction program, along with a typical page of output from a test, is included
in Appendix C.

3.1.3 Fuel Analysis

All fuels used in this program were analyzed prior to use. Additives
which were used in some tests were either analyzed or certified by the vendor specifi-
cations of purity. A summary of all the fuel analyses is included as Table 5.

RP-1 was obtained as a Government Furnished Propellant from
Aerojet Test Area J. Two 55 gallon drums were cleaned and filled with RP-1, which
provided the fuel for all static and dynamic Task 1 testing. Samples of the RP-1 were
analyzed at Aerojet by gas chromatography and X-ray fluorescence. The gas chromato-
graph resolved over 50 drstmct peaks ‘though the exact molecular species

correspondmg to each peak was not determined. X-ray ﬂuorescence was used to ana-

lyze the RP-1 for sulfur content. No sulfur compounds were detected. Laboratory
standards which were made the detection limit of the 1nstrumentat10n to be
approximately 10 ppm (by werght) of sulfur compounds in the RP 1.

One 55 gallon drum of hrgh punty n-dodecane was purchased from
Phillips Specialty Chemicals for Task 1. An independent analysis was conducted by
J&A Associates, Golden, CO prior to use on the program. Gas chromatography was
used for characterization of the hydrocarbons In contrast with the analysis of the RP-1,
gas chromatography mdlcated that not more than two s spec1es were present in the n-
dodecane, namely >99% n-dodecane and <1% n-undecane. Standards established that
the n-dodecane contained less than 2 ppm (by weight) each of aromatic, olefinic, or
other aliphatic compounds. X-ray fluorescence did not find any sulfur compounds in
the n-dodecane, down to a detection limit of 2 ppm.

RPT/DO040654/1.0:3.1 26



TABLE 5

VENDOR SUPPLIED ANALYSES OF PROPELLANTS AND ADDITIVES

Material
UHP Methane

Instrument Grade
Propane

Ethylene

Propylene

Methyl Mercaptan
n-Dodecane

Dodecanethiol
Biphenyl
1-Dodecene
Research Grade
Propane

Technical Grade
Methane

Supplier
Linde Spedialty Gases

Liquid Carbonic =

Linde Specialty Gases

Linde Spedialty Gases

Matheson Gas Products
Phillips Specialty Chem.
Aldrich Specialty Chem.
Aldrich Specialty Chem.

Aldrich Specialty Chem.
Matheson Gas Products

Linde Specialty Gases

27

A ANV A ANA

VvV A A

v Vv

A ANV V VYV

A

99.97
24
15
5
2
99.5
2
2
0.6
200
99.5
6
41
2
2
99.0
172
1192
20
9.5
99.0
1.0
98.0
99.0
95.0
99.96
5
5
0.1
270

55

97.0
8.8
48

Analysis
vol % CHy
ppm O2
ppm N2
ppm H2S
ppm SO2
wt % C3Hg (liquid)
ppm SOz
ppm H3S
ppm O
ppm H0
vol % CoHy
ppm O2
ppm N2
ppm HaS
ppm SO
wt % C3Hg (liquid)
ppm Hj (gas)
ppm O2 (gas)
vol % N3 (gas)
wt % CHs SH (liquid)
wt % n-dodecane
wt % undecane
wt % dodecanethiol
wt % biphenyl
wt % 1-dodecene
% C3Hg
ppm O2
ppm N2
ppm CHy
ppm C2Hs
ppm CaHy
ppm C3Hg
ppm i-butane
ppm n-butane
ppm HO
% CHy
ppm Oz
ppm H20
ppm SOy



3.1, Test Methods (cont.)

Ultra High Purity (UHP) methane was used in the static tests of
Tasks 1 and 2. A complete analysis supplied by the vendor is included in Table 5.

Technical Grade methane was used in the dynamic tests of Tasks 1
and 2. The vendor supplied analysis is included in Table 5. Note that no sulfur
compounds were found in the original analysis of the methane, down to a detection
limit of 2 ppm by volume.

After Task 1 dynamic tests indicated that even very low (1 ppm by
volume) concentrations of sulfur compounds in methane could create significant corro-
sion problems with copper, additional analysis of the technical grade methane was con-
ducted specifically to lower the detection limit on sulfur compounds. Two stainless
steel Hoke cylinders were filled with 1800 psig of methane, one directly from the
starting methane stock, and the other from the run tanks of the Aerojet Carbothermal
Test Facility, which contained methane plus 1 ppm (by volume) methyl mercaptan. The
two were marked with serial numbers and shipped to Air Products Corporation. The
two cylinders were analyzed for HyS, CH3SH, and COS by gas chromatography down
to a detection limit of 0.2 ppm by volume. No sulfur compounds were found, even in
the sample which was intentionally contaminated to 1 ppm. Two conclusions are pos-
sible. Either the detection limit of the analytical method was not as low as was believed,
or the sampling procedure which was used to obtain the contaminated specimen did
not produce representative samples. In either case, the ramifications are significant and
justify further study of the fuel supplier’s sampling and analytical techniques.

Instrument Grade Propane was used during the first static test with
propane (test 106) and during all the dynamic tests. Analysis was provided by the sup-
plier prior to use. This analysis certified the liquid phase of the propane to contain
>99.5 wt % propane, with the gas phase containing 0.6 ppm oxygen, 200 ppm water,
and less than 2 ppm sulfur dioxide and hydrogen sulfide (none detected). After the ini-
tial dynamic tests with propane showed the formation small amounts of Cu;S in the
channels, additional analysis was done on one of the propane cylinders. One of the
original cylinders was shipped to Drexel University and analyzed by Dr. Alan R. Bandy.
He analyzed the head gas of the cylinder by gas chromatography and flame
photometric detection for COS, H»S and CH3SH. None was found, down to a detection

RPT/DO40654/1.0-3.4 28



3.1, Test Methods (cont.)

limit of 0.050 ppm by volume. It was possible that the sulfur content of the liquid phase
was higher. The liquid phase is more difficult to analyze, and was not analyzed.

Research Grade Propane was used during all other static tests with
propane. It was analyzed by the supplier prior to delivery, and the results of this anal-
ysis are shown in Table 5. Test results did not indicate any sulfur contamination of this
propane.

Additives were also purchased for the program to test the effect of
high concentrations of olefins, aromatics, and various sulfur-containing compounds.
Additives which were tested included biphenyl, 1-dodecene, and n-dodecanethiol (in
selected RP-1 tests), ethylene, methyl mercaptan, and hydrogen sulfide (in selected
methane tests), and propylene and methyl mercaptan (in selected propane tests).
Analyses of these additives were supplied by the vendors and are included in Table 5.

RPT/D0406.54/1.0-3.1 29



3.0, Task 1 — Corrosive Interaction and Corrosion Rate Determination (cont.)
3.2 RP-1TEST RESULTS

This section of the report discusses the results of tests with RP-1 and its high
purity simulant, n-dodecane. The results of static tests using RP-1 and n-dodecane are
covered first, followed by a discussion of the dynamic tests.

3.2.1 RP-1 Static Tests (Task 1.1.2)

As detailed in Section 3.1.1, static tests were conducted using glass
ampules filled with RP-1 or n-dodecane and a coupon of Amzirc, NASA-Z, OFHC, or
55304. This section documents the results of these static tests.

A custom set of glassware for loading and unloading the ampules was
assembled. Care was taken in the selection of materials used in the system to prevent
contamination of the ampules from sources such as stopcock grease, and valve and
equipment seals. The only materials in contact with the ampules or their contents were
glass, greaseless Teflon stopcocks and Tygon tubing.

Ten ampules were loaded with RP-1 or n-dodecane plus selected
additives and metallic coupons. Table 6 records the contents of each ampul. These ten
ampules were selected to focus upon the effect of the variables believed to be most
important in this Sfudy, namely (1) fuel iﬁiﬁﬁi‘iﬁes, (2) exposure of the fuel to air,

(3) nature of copper-based material, i.e., OFHC vs Zr-Ag-Cu alloys such as NASA-Z,

(4) grain size of the material and (5) stress/strain history of the material. Analysis of the
contents of these ten ampules, both before and after the incubation period, provide an
independent test of the effect of each of these variables.

The ten ampules were placed in a 400 F oven and incubated at
constant temperature for 336 hours (14 days). Figure 8 shows the oven temperature
during the test.

At the end of the fourteen day incubation period, the ampules were
removed from the oven and visually inspected. The RP-1 in the ampules showed a
change of color in the liquid phase. The RP-1 loaded into the ampules was a dark pink.
After heating during the test, the RP-1 became clear and transparent. This color change

RPT/DOA0S 54/32 30



TABLE 6

CONTENTS OF RP-1 GLASS AMPUL TESTS

Ampul

_No._ Fuel Additives Material Grain Strain
1 RP-1 Air None
2 n-Dodecane Air None
3 RP-1 Air 316SS
4  RP-1 Air ~ OFHC Fine No
5 RP-1 None OFHC Fine No
6 RP-1 Air NASA-Z Fine No
7 n-Dodecane Air NASA-Z Fine No
8 n-Dodecane Air +525ppm S NASA-Z Fine No
9 n-Dodecane Air +525 ppm S OFHC Large No

10 n-Dodecane Air +525ppm S OFHC Large Yes

RPT/D0406.54-T 3 1 '



3.2, RP-1 Test Results (cont.)

occurred in all of the RP-1 ampules, including those with copper coupons, those with
stainless steel coupons, and those with no coupons at all (i.e., the control tests).

The only metallic coupons which exhibited visual changes were those
copper coupons (both OFHC and NASA-Z) which were exposed to n-dodecane doped
with p-dodecanethiol to a total sulfur level of 525 ppm (ampules 8, 9 and 10). These
coupons developed a uniform, dark grey, tarnish or deposit on the surface. No other
changes were visible on any of the remaining metallic coupons.

After visual inspection upon removal from the oven, the ampules
were stored in a 45 F refrigerator until they were opened 12 days later. No visual
changes occurred during the 12 days of refrigeration.

Each ampul was opened into a measured volume so the internal pres-
sure of the ampul could be calculated. Table 7 shows the results of these calculations.
Note that none of the ampules showed an increase in pressure as a result of the test,
indicating that no insoluble gases were produced during the course of the test.

This conclusion was verified by the fact that no significant amounts of
light molecular weight hydrocarbons were detected in the quantitative analysis of the
gas phase. Analyses for hydrogen, helium, n-butane, i-butane, n-hexane, propane,
ethane, methane, ethylene, propylene, carbon dioxide, and carbon monoxide were
carried out by gas chromatography with appropriate calibrated standards. None of the
ampules showed the pfeéénce of any of these compounds. Oxygen and nitrogen were
the only species positively identified.

Similarly, comparison of the before and after analysis of the liquid

phase of the ampules for hydrocarbon species and dissolved gases showed little change.

Figure 14 shows a trace from a gas chromatograph of a sample of the RP-1 (saturated
with air) loaded into ampules 1, 3, 4, and 6. Figure 15 shows a trace from the liquid
extracted from ampul 6 after exposure to a NASA-Z coupon. Note that the traces show
excellent separatioﬁ of the various compounds which comprise RP-1, but comparison of
the two traces showed no significant difference in the nature of the species separated or
their relative amounts. None of the gas chromatograms of the liquid phase showed any
difference before versus after exposure to the copper.

RPT/DO406.54/3.2 32
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3.2, RP-1 Test Results (cont.)

Sulfur analysis of the liquid phase was done by X-ray fluorescence.
The RP-1 and the n-dodecane used as starting material contained less than 10 ppm of
sulfur (the detection limit of the equipment used to run the analysis — no sulfur was
‘actually found in the starting materials).

n-dodecanethiol was added to n-dodecane in ampules 8,9, and 10to a
prescribed level of 500 ppm by weight. X-ray fluorescence showed the sulfur content of
these ampules was 525 ppm by weight before exposure to the copper. Some of this sul-
fur in the liquid phase was consumed during the test. The sulfur content of the liquid in
ampules 8, 9 and 10 at the end of the tests was 368, 446, and 442 ppm by weight, respec-
tively.

Material balances were performed on the sulfur in each of these
ampules. As shown in Table 8, excellent closure was obtained based on the before and
after analysis of the liquid phase and the weight gain of the copper coupon. As well as
providing assurance of the validity of the analytical procedures and lab techniques of
these tests, the fact that the weight gain of the coupon can be entirely traced to the
deposition of sulfur on the surface was further indication that no corrosion, pitting, or
carbon deposition on the copper took place during the test, other than that caused by
the sulfur reaction with the metal.

The only metallic coupons which exhibited visual changes were those
copper coupons (both OFHC and NASA-Z) which were exposed to n-dodecane doped
with sulfur (ampules 8, 9 and 10). These coupons developed a uniform black tarnish or
deposit on the surface. No other changes were visible on any of the remaining metallic
coupons.

Figures 16 and 17, typical 35 mm photos of the metallic coupons taken
before and after exposure, document this change in appearance. Figure 16 shows
specimen 10 before and after exposure to RP-1 saturated with air. No visible change
was detected. Figure 17 shows specimen 30 before and after exposure to pure grade n-
dodecane plus 525 ppm by weight sulfur as dodecanthiol. Note the dark, even deposit
on the surface which developed during the test. This was identified primarily as
cuprous sulfide, CupS.

RPT/D0406.54/32 36



Ampul
Number

10

RI'T/D0406.54-T

TABLE 8

MATERIAL BALANCES FOR SULFUR IN AMPUL TESTS

Sulfur
Liquid in Liquid
Volume ml Before, g
3.36 .00142
3.36 .00142
3.36 .00142

37

Sulfur
in Liquid
After, g
.00099
00120

00117

Coupon

Weight

Gain, g
.0003
.0003

.0002

% Closure

(After/Before)
90%

106%
98%



ORIGINAL PAGE |
BLACK AND WHITE PHOTOGRAPH

Before Test
Color: Bright Copper

After Test
Color: Bright Copper

Figure 16. OFHC Copper Specimen Exposed to Air-Saturated RP-1
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ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Before Test

Color: Bright Copper

After Test
Color: Steel Gray

Figure 17. NASA-Z Specimen Exposed to n-dodecane Plus 525 ppm Sulfur as Dodecanethiol

39



3.2, RP-1 Test Results (cont.)

SEM photos of these same coupons are also informative. Figure 18
shows the surface of specimen 10 magnified 50, 400, and 2,000 times before and after
exposure to RP-1 saturated with air. A very slight deposit becomes visible at the
highest magnification. This small deposit and the fact that it is visible only at high
magnification is typical of all the coupons exposed to air-saturated RP-1.

Figure 19 shows a portion of specimen 30 before and after exposure to
n-dodecane plus 525 ppm sulfur, again magnified 50, 400 and 2000 times. The CuzS
deposit, evident with the unaided eye, becomes very dramatic when magnified. The
formation of these deposits is typical of all the coupons exposed to n-dodecane with 525
ppm of sulfur added.

Table 9 summarizes the visual and SEM examinations from all the
ampul test coupons. By comparing various combinations of tests, it is possible to make
a number of conclusions from the results shown in this table. For example, by
comparing tests 6 and 7, it can be seen that the test results were not affected by using
n-dodecane as the fuel instead of RP-1. Similar reasoning can be used to arrive at the
following conclusions regarding the compatibility of RP-1 with copper at 400F:

(1) RP-1 (degassed and sulfur-free) does not react with copper.

(2) RP-1 (saturated with air) reacts to form a very minor deposit on
copper.

(3) RP-1 (with 525 ppm by weight sulfur as n-dodecanethiol) reacts to
form an even, complete coating of Cu;,S.

(4) The strain history of the copper had no effect.

(5) Changing the copper material from OFHC to NASA-Z had no
effect.

(6) The RP-1 used in this series behaved the same as n-dodecane. Itis
likely that this is dependent on the purity of this particular ship-
ment of RP-1.

RI'T/D0406.54 /32 40
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3.2, RP-1 Test Results (cont.)

3.22 RP-1 Dynamic Tests (Task 1.2.2)

A series of thirteen dynamic tests were conducted with RP-1 and /or
n-dodecane in the Aerojet Carbothermal Test Facility. The objective of these tests was to
investigate the compatibility of RP-1 with copper chamber liner materials at conditions
simulating those anticipated in the cooling channels of regeneratively cooled
LO,/hydrocarbon booster engines. Table 10 summarizes relevant test conditions
produced in the RP-1 dynamic tests. Table 11 summarizes the 13 dynamic tests which
were conducted.

Test R101 was terminated after 185 sec because of a fuel leak. The test
used degassed n-dodecane as the fuel. The heater block and test specimen were
allowed to heat up to 1000 F before the fuel p'uﬂl’n'p'was started and fuel was fed through
the test section at 120 feet/sec. During the first 20 sec of fuel flow, the wall tempera-
tures of the specimen decreased by 200 F, while the temperature in the copper heater
block continued to slowly increase. Then, 150 sec after the fuel flow was started, steady
state temperatures were reached and the pump speed was increased to obtain a flow
velocity of 220 ft/sec. This further reduced the wall temperature of the specimen. At
185 sec after initiation of fuel flow, a leak was observed. The heaters and pump were
immediately shut off and the test section was purged with high pressure nitrogen gas.

Upon disassembly of the apparatus, blackening of the specimen chan-
nel was noted. The discoloration was uniform from channel inlet to outlet and on each
of the channel walls. The specimen was weighed (no change), photographed and sub-
mitted for metallographic analysis. Due to the short duration of the test, no changes
were seen in the heat transfer or roughness of the specimen channel.

Test R102 was conducted with an OFHC specimen and degased n-
dodecane as the fuel. The run duration was 1624 sec, and was entirely operated on
recirculation from the recirculation tank. The run was ended by an operating error in
which valves were opened in an incorrect sequence, resulting in a loss of suction
pressure to the delivery pump. This reduced the flowrate into the block, which
required a shutdown of the heaters and the test. The appearance of the specimen when
removed from the Carbothermal Apparatus again showed blackening of the channel
surfaces in contact with the fuel.

RPT/DO40654/3.2 44



RPT/DO0406.54-T

TABLE 10

RP-1 DYNAMIC TESTS INVESTIGATED COMPATIBILITY AT
REALISTIC COOLING CHANNEL CONDITIONS

Test
Conditions
Wall Temperature, F 560-800
Max Coolant-Side q/A, Btu/in.2-s 20
Coolant Pressure, psia : 3500
Coolant Velocity, ft/s 250-300
Bulk Temperature, F 70-380
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3.2, RP-1 Test Results (cont.)

Test R103 was conducted with an OFHC specimen and degased n-
dodecane as the fuel. The run duration was 3483 sec (0.97 hr), including approximately
1300 sec of once-through operation from the run tank to the collection barrel at essen-
tially steady state operating conditions. The remainder of the run was conducted in a
recirculating mode. The maximum wall temperature recorded during the run was
700 F.

As shown in Figure 20, the heat transfer coefficient showed a steady
decline during the run, first noticed when the wall temperature reached 600 F, and con-
tinuing through the last 2800 sec of the run. During this time, the run conditions stayed
nearly constant, except fora steady and gradual increase in the channel wall tempera-
ture spanning operations in both a recirculating and a once-through operating mode.
The pressure drop of the fuel through the channel did not change significantly from the
beginning to the end of the run. Visual examination of the OFHC specimen used in Run
R103 showed the typical blackening of the channel wall, uniform on all three sides, and
from inlet to outlet.

Test R104 was conducted with a NASA-Z specimen and degased n-
dodecane as the fuel. The run duration was 3253 sec, consisting of approximately 1600
sec of once-through operation from the run tank to the collection barrel at steady state
operating conditions, and the remainder in a recirculation mode. The maximum wall
temperature recorded during the run was 699 F.

Again, the heat transfer coefficient declined steadily during the run,
beginning when the wall temperature reached 650 F, and continuing through the last
2300 sec of the run. The rate of decrease was almost identical to that seen in test R103,
which provided the first indication that there is no difference in the performance of
OFHC vs. NASA-Z in the dynamic compatibility tests. The pressure drop of the fuel
through the channel did not change significantly from the beginning to the end of the
run.

Visual examination of the NASA-Z specimen used in Run R104
showed blackening of the channel wall, but it was unusual in that the discoloration was
much more distinct on the outlet of the channel than on the inlet. Figure 21 are 35 mm
photographs which document the before and after appearance of the specimen used in

RIT/DM406.54/32 47
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ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Figure 21. Test Specimen Before and After Dynamic Test R104. Note Black
Discoloration of Channel After 3253 sec of Operation With
n — Dodecane at a Maximum Wall Temperature of 699°F
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3.2, RP-1 Test Results (cont.)

this run. The macroscopic view of the specimen and it can be seen that the blackening is
much more severe at the outlet of the specimen than at the inlet.

Test R105 was conducted with an OFHC specimen and degased n-
dodecane as the fuel. The run duration was 3118 sec, consisting of approximately 1600
sec of once-through operation from the run tank to the collection barrel at steady state
operating conditions, and the remainder in a recirculation mode. The maximum wall
temperature recorded during the run was 808 F.

As shown in Figure 22, the heat transfer coefficient declined steadily
during the run, beginning when the wall temperature reached 700 F, and continuing
through the last 2300 sec of the run. The rate of decrease in the heat transfer coefficient
was much larger than in either run R103 or R104, probably due to the higher wall
temperatures which were used in this test. Again, the pressure drop of the fuel through
the channel did not change significantly from the beginning to the end of the run.

Visual examination of the OFHC specimen used in Run R105 showed
a uniform blackening of the channel wall. The blackening did not appear to be worse
than that seen on the specimens used in the previous runs. o

After the run, the 0.4 micron filters both upstream and downstream of
the test block were changed, and the filter elements collected for analysis. These filters
were used during two runs (R104 and R105). Thereafter, it became standard practice to
change the filter elements after each run. The filter upstream of the test block showed a
fine black filtrate uniformly covering the exposed surface. The filter downstream of the
test block also showed a black filtrate, though the coating on the filter appeared to be
much thinner than on the upstream filter. This corresponds to the pressure drops
which were observed to increase significantly over the upstream filter during Run R105,
but only slightly over the downstream filter.

Test R106 was conducted with a NASA-Z specimen and degased n-
dodecane as the fuel. The run duration was 2899 sec, consisting of approximately 1400
sec of once-through operation from the run tank to the collection barrel at steady state
operating conditions, and the remainder in a recirculation mode. The maximum wall
temperature recorded during the run was 798 F.

RPT/D0406.54/3.2 50
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3.2, RP-1 Test Results (cont.)

The heat transfer coefficient declined steadily during the run,
beginning when the tall temperature reached 700 F, and continuing through the last
2500 sec of the run. The rate of decrease in the heat transfer coefficient was nearly iden-
tical to that observed in Run R105, confirming the previous observation made by com-
parison of Runs R103 and R104 that OFHC and NASA-Z appear to perform identically
with respect to their compatibility with n-dodecane.

Visual examination of the NASA-Z specimen used in Run R106
showed a uniform blackening of the channel wall. The blackening did not appear to be
worse than that seen on the specimens used in the previous runs, in spite of the larger
degradation in the heat transfer performance which was seen in this run.

Test R107 was conducted with a NASA-Z specimen and RP-1 as the
fuel. No attempt was made to degas the fuel either before or after its introduction into
the run tanks of the carbothermal ;yétem. The run duration was 3353 sec, consisting of
approximately 1350 sec of once-through operation from the run tank to the collection
barrel at steady state operating conditions, and the remainder in a recirculation mode.

The maximum wall temperature recorded during the run was 701 F.

The heat transfer coefficient declined steadily during the run, begin-
ning when the wall temperature reached 600 F, and continuing through the last 2600 sec
of the run. Visual examination of the NASA-Z specimen used in Run R107 showed a
uniform blackening of the channel wall, identical in appearance to the specimens used
in the n-dodecane runs.

This specimen was selected for further examination under a SEM.
Figure 23 shows two photomicrographs looking down onto the surface of the cooling
channel. Figure 23a is from a specimen which was machined but not tested, and repre-
sents the condition of the specimen surface before conduct of the dynamic tests. Figure
23bisa photomicrograph of the surface of the specimen Z3 after test R107. Note the
thin deposits on the surface of the specimen. This is the black tar which was observed
in the channel of most of the specimens (including the specimen from Test R107) after
testing with RP-1 or n-dodecane.
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3.2, RP-1 Test Results (cont.)

Electron Spectroscopy for Chemical Analysis (ESCA) was performed
by an independent laboratory on the surface of this specimen to determine the elemen-
tal composition of the tar-like deposit. ESCA analysis is capable of determining elemen-
tal composition (and to a limited extent, bonding structure as well) of very thin, i.e., 100
Angstrom layers of material. A summary of the results of the ESCA analyses which
were performed are presented in Table 12.

Test R108 was shutdown after only 145 sec of operation due to failure
of the SCR controller used to adjust the power level of the cartridge heaters of the
Carbothermal block. Due to the short duration of the test, no attempt was made to
analyze the run data. Visual examination of the NASA-Z specimen used in Run R108
showed a uniform blackening of the channel wall, identical in appearance to the speci-
mens used in the n-dodecane runs.

Test R109 was conducted with an Amzirc specimen and RP-1 as the
fuel. The fuel was not degassed. The run duration was 2853 sec, consisting of
approximately 1450 sec of once-through operation from the run tank to the collection
barrel at essentially steady state operating conditions, and the remainder in a recircula-
tion mode. The maximum wall temperature recorded during the run was 576 F.

This run was conducted at lower wall temperatures to find if a test
could be conducted in which the heat transfer coefficient did not decline. As seen in
Figure 24, the heat transfer coefficient stayed steady during the run, indicating no
buildup of a thermal barrier. As in all previous runs, no significant change was
observed in the pressure drop through the channel. However, visual examination of the
Amzirc specimen used in Run R109 still showed a uniform blackening of the channel
wall, identical in appearance to the specimens used in previous runs.

Test R110 was shutdown after only 257 sec of operation because RP-1
was entrained from the collection barrel into the test bay vent by a nitrogen purge. Due
to the short duration of the test, no attempt was made to analyze the run data. Visual
examination of the NASA-Z specimen used in Run R110 showed a uniform blackening
of the channel wall, identical in appearance to the specimens used in the n-dodecane
runs.

RPT/D0406.54/32 54



TABLE 12

ESCA ANAYSIS OF DEPOSIT ON TEST SPECIMEN CHANNELS
FROM RP-1/n-DODECANE DYNAMIC TESTS

Sample
ID
Number | Test C N O Si S Cu Ag Zr
Z-1 R104 49. 1.9 30. 7.9 1.0 10.0 -- -
Z-3* R107 63. 29 21. 2.0 31 8.1 --- -—
Z-7 R113 42. - 35. -— 1.2 21.0 0.2 |<0.2

*The ESCA data from Specimen Z-3 was further ar{élyzéd to determine the bonding
state of the elements identified. Ester, ether, and olefinic structures were dominant,

indicating that the deposit is primarily a complex, high molecular weight polymeric
hydrocarbon.

RPT/D0406.54-T
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3.2, RP-1 Test Results (cont.)

Test R111 was conducted using a NASA-Z specimen and RP-1 with
1% (by wt.) 1-dodecene added to examine the effect of a high olefinic content in the fuel.
As was typical with all the RP-1 tests conducted with additives, the 1-dodecene was
added only to the run tank. The recirculation tank was left uncontaminated and
contained only air-exposed Mil-Spec RP-1.

The total test duration was 2349 sec, consisting of approximately 1340
sec in a once-through mode of operation with the doped RP-1, and the remainder in a
circulating mode with uncontaminated RP-1. The maximum wall temperature recorded
during the run was 576 F.

The heat transfer coefficient declined during operation from the run
tank. However, it is not clear if this was due to the buildup of a thermal barrier, or sim-
ply attributable to the steadily decreasing velocity of the fuel through the channel which
was observed during the run. The measured heat transfer coefficient declined by 15%
during operation from the run tank. The Hines Correlation predicted a decline of about
10% during this same period, primarily because of the declining fuel velocity.

For the first time in the test series, the pressure drop through the
channel increased during the run. As seen in Figure 25, the apparent channel roughness
(as calculated from the pressure drop through the channel) was near 0 (i.e., a smooth
channel) at the beginning of the run. By the time the run tank was switched on, the
apparent channel roughness had increased to approximately 130 micro-inches. The
calculated roughness continued to increase during once-through operation to a maxi-
mum of 350 micro-inches before finishing at approximately 250 micro-inches.

Visual examination of the NASA-Z specimen used in Run R111
showed the typical uniform blackening of the channel wall. Examination under a 40X
optical microscope did not show evidence of material loss or roughening of the channel
surface.

Test R112 was conducted with an Amzirc specimen and RP-1 with 1%
(by wt.) biphenyl added to examine the effect of a high aromatic content in the fuel. The
biphenyl was added only to the run tank. The recirculation tank was left
uncontaminated and contained only air-exposed Mil-Spec RP-1.

RPT/DO40654/32 57
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3.2, RP-1 Test Results {cont.)

The total test duration was 2519 sec, consisting of approximately 1536
sec in a once-through mode of operation with the doped RP-1, and the remainder in a
recirculating mode with uncontaminated RP-1. The maximum wall temperature
recorded during the run was 579 F.

As shown in Figure 26, the heat transfer coefficient declined 10%
during operation from the run tank, while the Hines correlation predicted almost no
change. No similar decline in heat transfer performance was measured during this test
while running Mil-Spec RP-1 from the recirculation tank through the specimen, nor had
other test runs conducted with RP-1 at approximately the same temperature and flow
conditions measured a decline in the heat transfer performance.

The pressure drop through the channel increased slightly during the
run. Figure 27 shows the apparent channel roughness (as circulated from the pressure
drop through the channel) throughout the run. From the beginning to the end of the
run, the apparent channel roughness increased by 40 micro-inches, which occurred
during operation with the RP-1 plus biphenyl.

Visual examination of the Amzirc specimen used in Test R112 showed
the typical uniform blackening of the channel wall. Examination under a 40X optical
microscope did not show evidence of material loss or roughening of the channel surface.

Test R113 was conducted with a NASA-Z specimen and RP-1 with 50
ppm of sulfur as n-dodecanethiol added to examine the effect of the presence of
mercaptan sulfur in the fuel. As was typical with all the RP-1 plus additive tests, the n-
dodecanethiol was added only to the run tank. The recirculation tank was left uncon-
taminated and contained only air-exposed mil spec RP-1.

The total test duration was 2339 sec, consisting of approximately 430
sec in a once-through mode of operation with the doped RP-1, and the remainder in a
recirculating mode with uncontaminated RP-1. The maximum wall temperature
recorded during the run was 576 F.
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3.2, RP-1 Test Results (cont.)

As shown in Figure 28, the heat transfer coefficient increased slightly
during operation from the run tank. Again, the increase in heat transfer performance
was attributed to the additive in the RP-1 (in this case, the sulfur compound n-
dodecanethiol), as tests with uncontaminated RP-1 at similar conditions did not exhibit
this behavior.

The pressure drop through the channel showed a definite increase
during Test R113. As seen in Figure 29, the apparent channel roughness increased 250
micro-inches during the 1430 sec of operation with the mercaptan-containing RP-1. This
translates into a 20% increase in the pressure drop through these 20 mil channels in
turbulent flow.

Visual examination of the NASA-Z specimen used in Test R113
showed the typical uniform blackening of the channel wall, though the blackening
seemed to be more dense and heavy than that seen with other specimens in the series.
Examination under a 40X optical microscope did not show evidence of material loss but
did show a definite roughening of the channel surface.

Examination of the specimens used in the RP-1 tests under a SEM
confirmed that the channel had been roughened. SEM photos of specimen Z7, the
NASA-Z specimen exposed to RP-1 fuels plus 50 ppm of mercaptan sulfur, are included
as Figures 30 and 31.

Figure 30 shows two magnifications of a view looking down into the
channel. Figure 30a shows the channel and lands on either side at a low magnification
(80X). Just outside the raised land area is the impression left by the sealing manifold as
it squeezed against the bottom of the channel. Figure 30b shows the same view into the
bottom of the channel at 250X. The rough appearance of the surface is more evident at
this higher magnification. Also note that no scratches or grooves from machining are
visible.

Figure 31 shows three views of a section of the channel wall at high
magnification. Figure 31a shows the roughening of the wall at 1000X. A closeup of this
area, Figure 31b, shows clearly defined nodes of material rising from the underlying
surface. Figure 31c shows a view of one of these nodes. These nodes of material were
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3.2, RP-1 Test Results (cont.)

identified as Cu,S, formed by a corrosive process in which the copper surfaces of the
channel reacted with the sulfur compound added to the RP-1.

A review of all the on-line data from the RP-1 dynamic tests and all
the posttest metallographic examinations of the specimen led to the following
conclusions:

1) When operated at high wall temperatures, RP-1 and n-dodecane
deposited a thin, tenacious layer of a complex, high molecular
weight hydrocarbon on all copper surfaces.

2) These deposits reduced the heat transfer performance of the
channel, but had no measurable impact on the pressure drop
through the channel.

3) The rate at which the heat transfer performance was affected (i.e.,
the fouling rate) was a strong function of the wall temperature of
the channel. The higher the wall temperature, the higher the
fouling rate of the channel. On the other hand, it was demon-
strated that fouling of the channel by hydrocarbon deposits could
be eliminated by operation at wall temperatures below approxi-
mately 570 F.

4) The fouling rates measured in this program were in good agree-
ment with those measured by previous investigators. Figure 32
presents a plot of correlations developed previously for the
fouling rate as a function of inverse wall temperature, along with
the data points from this program.

5) There was no measurable difference in the performance of the
various copper materials tested, i.e., OFHC, Amzirc, and
NASA-Z.

6) There was no noticeable difference between RP-1 and n-dodecane.
The formation of hydrocarbon deposits was demonstrated with
both fuels at similar rates. Thus, it does not appear to be feasible
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3.2, RP-1 Test Results (cont.)

RIT/D040654/3.2

7)

8)

9)

to alleviate the deposition of the fuel by refining the RP-1 to its
major component.

The addition of 1% (by weight) 1-dodecene to the RP-1 did not
appear to affect the heat transfer performance of the test channel,
but a 10% increase in the pressure drop through the channel was
measured during the test.

The addition of 1% (by weight) biphenyl impacted the heat trans-
fer performance of the channel during the test, but had only a
very small affect on the hydraulic performance.

The addition of 50 ppm (by weight) sulfur as n-dodecanethiol to
RP-1 caused corrosion of the channel which affected the pressure
drop through the channel, but had very little impact on the heat
transfer performance.
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3.0, Task 1—Corrosive Interaction and Corrosion Rate Determination (cont.)
3.3 METHANE TEST RESULTS

This section of the report discusses the results of compatibility tests with cop-
per and copper alloys in contact with methane. The results of static tests using methane
and methane with contaminants intentionally added is covered first, followed by a dis-
cussion of the results of the dynamic tests.

3.3.1 Methane Static Tests (Task 1.1.3)

As described in Section 3.1.1, static tests using methane were con-
ducted in an Aminco Bomb Apparatus. Coupons of NASA-Z were exposed to Ultra
High Purity Methane (UHP) and UHP Methane with contaminants intentionally added
at high temperature (650 F) and pressure (3000 psig). This section of the report docu-
ments the results of these static tests.

Six separate static test runs were conducted with methane in Task 1.
Table 13 summarize the run conditions in each of the tests.

Test 101 established a baseline by filling a bomb containing only UHP
methane, with no additives or metal specimen, to nominal test temperature (650 F) and
pressure (3000 psig) for 30 min. Analysis of the contents of the bomb was done by gas
chromatography both before and after the test. Comparison of these analyses showed
no significant changes had occurred during the test. It was concluded, therefore, that
the UHP methane was chemically and physically stable in the bomb at these tempera-
tures and pressures, and no reactions occurred which need to be “factored in” to the
bomb tests using a copper coupon.

Test 102 exposed a NASA-Z coupon to UHP methane. The bomb was
again taken to 3000 psig and 650 F for 30 min. As in Test 101, before and after analysis
of the gas showed no changes which had occurred to the methane as a result of this test.
No visible changes occurred to the NASA-Z coupon and no changes were seen in the
SEM examinations of the coupon conducted before and after exposure. Figure 33 shows
SEM photographs of the surface of the NASA-Z coupon before and after this test. Even
at the high magnification (2000X), no changes were evident on the NASA-Z surface.
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NASA-Z Before
Static Test
(2000X)

NASA-Z After
Static Test
(2000X)

Figure 33. NASA-Z Did Not React With Uncontaminated Ultra High Purity
Methane in the Static Bomb Tests
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3.3, Methane Test Results (cont.)

Test 103 used a bomb filled with a mixture of 99.0 vol % UHP
methane and 1.0% ultra zero air.()'. This mixture was made by first filling the bomb
with ultra zero air to a pressure of 672 mm Hg at 70 F. Then the bomb was filled to a
total pressure by 1234 psig at 70 F with ultra high purity methane.

After exposure, analysis of the gas phase showed significant depletion
of oxygen, with no formation of combustion products such as CO, CO, or HyO. Visual
inspection of the NASA-Z coupon showed some tarnishing of the exposed surface.

SEM examinations showed a very light deposit on the surface with no evidence of cor-
rosion or surface attack. Figure 34 documents the appearance of this oxidation layer at
high magnification. '

Test 104 exposed a NASA-Z coupon to a bomb filled with a mixture of
97.8 vol % UHP methane and 2.2 vol % ethylene. This mixture was made by charging
the bomb with 29.19 psia ethylene, and then pressurizing the bomb to 1321.6 psia with
UHP methane at 75 F.

After exposure, analysis of the gas phase showed no change had
occurred during the test, and SEM examination of the coupon showed no evidence of
deposits or corrosion on the surface of the coupon. Thus, the addition of ethylene did
not induce any reactions with the NASA-Z.

Test 105 exposed a NASA-Z coupon to a bomb containing only UHP
methane at a pressure of 4800 psig. Analysis of the gas showed no change had occurred
during the test, and SEM examination of the coupon showed no evidence of deposits or
corrosion on the surface of the coupon. NASA-Z is apparently unreactive with UHP
methane, even at these high temperatures and pressures.

Test 107 exposed a NASA-Z coupon to a bomb filled with 272 ppm by
volume methyl mercaptan in UHP methane. This mixture was made by filling the
bomb with 18 mm Hg of methyl mercaptan, then increasing the pressure to 1259.7 psia

M Ultra zero air—compressed air certified to contain less than 0.1 ppm total hydrocarbons as CHg and
less than 8 ppm H30.
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NASA-Z Before
Static Test
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NASA-Z After
Static Test
~ (2000X)

Figure 34. Methane Plus 1% (by vol.) Air Left a Thin, Even Oxidation
Layer on NASA-Z in the Static Bomb Tests
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3.3, Methane Test Results (cont.)

with UHP methane. SEM photographs shown in Figure 35 show the surface of the spec-
imen underwent a dramatic change in appearance during this test. Elemental analysis
of the surface by Energy Dispersive Spectroscopy (EDS) indicated the presence of
copper and sulfur on the specimen, as shown in Figure 36.

A visible coating formed on the coupon during this test, as a thin,
even, grey deposit, much like those deposits observed in the ampul tests using n-
dodecane with n-dodecanethiol.

Additionally, this was the only coupon in the methane tests which
showed a significant weight change. The coupon weight increased by 0.0018g (0.08%).
A complete material balance on the sulfur compound added to the bomb could not be
made because the GC was not calibrated to detect any unreacted methyl mercaptan
remaining in the bomb after testing. Approximately 0.0094g of sulfur was added to the
bomb as methyl mercaptan, CH3SH, meaning the coupon weight change accounted for
19% consumption of the added CH3SH.

At the end of the Task 1 static tests with methane, the following con-
clusions were drawn:

(1) Ultra High Purity Methane does not react with NASA-Z at 650 F
and pressures from 1500 to 5000 psig.

(2) The addition of 2% (by volume) ethylene had no affect on the test
results.

(3) The addition of 1% (by volume) ultra zero air tarnished the spec-
imen, with the formation of copper oxide.

(4) The addition of 272 ppm (by volume) CH3SH produced severe
corrosion of the specimen with the formation of Cu5S.
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NASA-Z Before
Static Test
(2000X)

R T

NASA-Z After
Static Test
(2000X)

TR TR R T

LIL Y5

Figure 35. Methane Plus 272 ppm (by vol.) CH3 SH Dramatically Affected the
Surface Appearance of NASA-Z in the Static Bomb Test
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3.3, Methane Test Results (cont.)

3.3.2 Methane Dynamic Tests Task 1

Thirteen dynamic tests were conducted with methane fuels and
uncoated copper channels. The test conditions simulated operating conditions antici-
pated in the cooling channels of a regeneratively cooled 750,000 IbF thrust booster
engine operating at a chamber pressure up to 3000 psia.

Table 14 summarizes the run conditions of the methane tests con-
ducted to date. All tests were conducted with technical grade (TG) methane which has
been analyzed to contain >97% methane, with 8.8 ppm O», 4.8 ppm H20, and less than 2
ppm sulfur.

Test M101 was halted after 92 sec of methane flow because methane
froze in the LN preconditioning heat exchanger. The specimen was not changed or

examined after this brief test.

Test M102 was stopped after 85 sec because the temperature of the
methane exiting the preconditioning heat exchanger rose steadily. When the methane
temperature at the inlet to the test specimen reached -20 F, the test was terminated.
Again, the specimen was not changed or examined after this test.

Test M103 achieved the desired steady state conditions at the entrance
to the test specimen. The inlet fuel temperature and pressure were stable at -125 F and
3950 psig, respectively. Methane flowed through the test specimen for 1325 sec until the
supply from the 6000 psig blowdown tanks was exhausted. Outlet fuel conditions
averaged 350 F and 1050 psig. The average heat flux during the test was approximately
25 Btu/in.2-sec with a maximum wall temperature of 680 F.

The run conditions were very steady during the test. The heat transfer
coefficient measured between the channel wall and the coolant increased slightly during
the run, as shown in Figure 37. However, the amount of increase is within the accuracy
of the technique used to measure this value. Similarly, the pressure drop through the
channel did not change perceptibly during the run. This on-line data provided the first
indication that the methane did not have a deleterious affect on the copper channel in
these dynamic tests.
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3.3, Methane Test Results (cont.)

After completion of Test M103, the OFHC Cu sheet welded on the bot-
tom of the specimen was removed by carefully cutting the weld with an end mill. This
method exposed the entire channel without damage to either the Amzirc test channel or
the OFHC Cu which directly covered the channel.

Visual inspection of the Amzirc test specimen showed qualitative evi-
dence of very minor oxidation near the inlet to the specimen channel. The discoloration
became less vivid along the length of the channel, with the last two-thirds of the channel
appearing to be essentially unaffected by the tests. Figure 38 presents 35 mm photos of
the channel taken before and after the Tests M101 through M103.

Examination of specimen A5 under a 40X optical microscope con-
firmed the visual observations. Small machine marks created when the test channel
was cut were still clearly visible. These telltale marks were not covered by any deposi-
tion products, or blurred by any corrosive or erosive action.

The specimen was examined in a SEM. It was difficult to find any
areas of interest in the channel, as the Amzirc appeared to be unaffected by the tests,
even at high magnification. Figure 39 presents two of the SEM photos which were
taken looking down into the channel. An EDS analysis of an area in the middle of the
channel showed the presence of only Cu and Zr.

Test M104 tested Amzirc specimen A7 with TG methane at a
somewhat higher wall temperature. Methane flowed through the test specimen for
1069 sec. Inlet fuel temperature and pressure averaged -110 F and 3980 psig, respec-
tively. Outlet fuel conditions averaged 450 F and 1050 psig. The average heat flux
during the test was approximately 30.5 Btu/in.2-sec, with a maximum wall temperature
of 840 F.

The run data indicated no reactivity of the Amzirc specimen under
these conditions. The heat transfer coefficient between the specimen wall and the fuel
decreased slightly during the run, though the amount of change is again within the
uncertainty of the measurement. The pressure drop through the specimen also
remained unchanged during the run.
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Figure 38. Specimen Tested With Tech Grade Methane at 680°F Shows Little Change
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3.3, Methane Test Results (cont.)

After the channel cover wﬁs milled off: visual inspection showed the
channel had developed a slight tarnish in all areas exposed to the fuel. The discol-
oration was consistent along the length of the channel.

Examination of specimen A7 under a 40X optical microscope showed
the formation of a very thin black scale covering the bottom of the channel. In ran-
domly spaced areas along the channel, the scale appeared to have flaked off, revealing
the still shiny copper surface underneath the thin deposit. Machine marks could still be
seen through the thin tarnish. However, it should be remembered that the deposit was
minor enough to have not appreciably affected the fluid flow or heat transfer character-
istics of the specimen.

Test M105 tested Amzirc specimen A6 with TG methane at the maxi-
mum wall temperature anticipated at the coolant channel wall. Methane flowed
through the test specimen for 1394 sec. Inlet fuel temperature and pressure averaged -
135 F and 4070 psig, respectively. Outlet fuel conditions averaged 500 F and 1010 psig.
The average heat flux during the test was approximately 32.0 Btu/in.2-sec with a maxi-
mum wall temperature of 918 F.

The run data again indicated no reactivity of the copper specimen
under these conditions. The heat transfer coefficient between the specimen wall and the
fuel decreased slightly during the run, though it varied less than in the previous two
runs. The pressure drop through the specimen also remained unchanged during the
run.

After the channel cover was milled off, visual inspection showed the
channel had developed a very slight tarnish in all areas exposed to the fuel. The discol-
oration was less vivid than in the previous test, and slightly more variable from the
beginning to the end of the channel.

Examination of the specimen under a 40X optical microscope showed
the channel to be nearly free of any deposition products or tarnish, except for an area of
oxidation surrounding the inlet to the channel. Some very minor scaling was observed
along the channel, appearing as a very thin black layer over an otherwise shiny copper
surface.
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3.3, Methane Test Results (cont.)

Test M106 was conducted for a total of 1383 sec using TG methane
and a NASA-Z test specimen (specimen Z8). The primary objective of this test was to
examine the performance of a NASA-Z specimen (all previous tests were conducted
with an Amzirc specimen) at a nominal wall temperature of 700 F.

The on-line data indicated no reaction occurred during the test, i.e.,
neither the heat transfer coefficient measured between the channel wall and the coolant
nor the pressure drop through the specimen changed during the test. Visual inspection
and examination under a 40X optical microscope showed very minor dark discoloration
of the last two-thirds of the channel. Small machine marks could still be seen through
the discoloration, and there was no evidence of material loss.

As was characteristic of most of the specimens, significant darkening
was observed on the land area of the specimen and the OFHC cover sheet. However,
the flow and temperature conditions in this area between the channel and the weld are
not well known, and almost certainly not representative of any region found in or
around an actual cooling channel.

Test number M107 was conducted for a total of 1200 sec using TG
methane and an Amzirc test specimen (specimen A9). The primary objective of this test
was to examine the performance of an Amzirc specimen under high heat flux conditions
at a nominal wall temperature of 850 F.

The steady-state coolant-side heat flux achieved during this test was
40.5 Btu/in.2-s at a wall temperature of 849 F. The on-line data indicated no reaction
occurred during the test, i.e., neither the heat transfer coefficient measured between the
channel wall and the coolant nor the pressure drop through the specimen changed
during the test.

Visual inspection and examination under a 40X optical microscope
showed almost no discoloration in the channel. Only very localized areas near the inlet
and outlet were darkened. All surface details evident on the receipt of the specimen
were still clearly visible after the test.
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3.3, Methane Test Results (cont.)

Test M108 was conducted for a total of 819 sec using TG methane and
a NASA-Z test specimen (specimen Z11). The primary objective of this test was to
examine the performance of a NASA-Z specimen under high heat flux conditions at a
nominal wall temperature of 1000 F. A secondary objective was to determine the
maximum attainable heat flux with a 2 in. long channel.

The steady-state coolant-side heat flux achieved during this test was
41.7 Btu/in.2-sec and a maximum wall temperature of 934 F. The on-line data indicated
no reaction occurred during the test, i.e., neither the heat transfer coefficient nor the
pressure drop though the specimen changed significantly during the test.

Visual inspection of NASA-Z specimen showed very minor discol-
oration in the channel, limited primarily to the second half of the channel. Again, sur-
face details were still visible through the tarnish. The discoloration was not consistent
along the length of the channel, appearing as dark patches on an otherwise bright and
shiny copper surface.

Test M109 was conducted for a total of 1310 sec using TG methane
doped with 5.3 volume percent ethylene and an Amzirc test specimen (specimen A8).
The primary objective of this test was to examine the affect of the addition of ethylene to
the methane.

The steady-state coolant-side heat flux achieved during the test was
31.0 Btu/in.2-s at a wall temperature of 759 F. The on-line data indicated no activity
reaction occurred during the test, i.e., neither the heat transfer coefficient nor the
pressure drop through the specimen changed during the test.

Visual inspection of the Amzirc specimen showed very little discol-
oration in the channel. Surface details were still clearly evident. Even areas near the
inlet and outlet holes showed little evidence of any activity or discoloration. The entire
channel retained its bright and shiny appearance, as documented in Figure 40 which
shows the 35 mm photographs taken of the specimen after completion of the test.
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Figure 40. Test Specimen after 1310 sec Test with Technical Grade Methane plus
5% Ethylene at Ty, 5] = 740°F Shows No Affect on Amzirc.
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3.3, Methane Test Results (cont.)

Test M110 was conducted for a total of 275 sec using TG methane
doped with 201 ppm (by volume) methyl mercaptan and an Amzirc test specimen
(Specimen A110). The primary objective of this test was to examine the effect of the
addition of a sulfur compound to the methane.

The run conditions were not maintained at steady state for a long
duration because a clog developed in the channel during the test. However, a coolant-
side heat flux of 41.0 Btu/in.2-s was attained for approximately 60 sec before a steady
reduction in the flowrate reduced the heat flux. Methane flow was started at a wall
temperature of 970 F. As was characteristic of all the methane tests, the wall tempera-
ture dropped upon the introduction of methane to the channel, reaching a minimum of
approximately 700 F after 10 sec of operation. After this, the wall temperatures recov-
ered as the heating block continued to rise to the desired operating temperature. For -
this test, the desired steady state wall temperature of 900 F was achieved approximately
30 sec before methane flow was terminated because of the severe reduction in flowrate.

The decrease in flowrate at a constant inlet pressure of 3550 psig was
the first time such behavior had been observed with methane. Figure 41 shows the
flowrate of methane through the channel measured during Tests M110, M111, and
M113.

The reduction in flowrate through the specimen was recognized as a
problem after approximately 60 sec of operation by observing the on-line data. After
200 sec of operation with methane, the flowrate, which had been continually dropping
since the start of the test, was down to approximately 50% of the initial value. The
heaters were shut off in preparation for termination of the test. Methane flow was con-
tinued in an effort to cool the heating block and test specimen. However, the flowrate
continued to drop and became erratic. After 275 sec of operation with methane, the
methane was shut off, and a nitrogen purge through the system was started.

The initial nitrogen flowrate was also reduced from its pretest level,
and it continued to decrease. After 40 sec of operation with nitrogen, the flowrate was
zero, and nitrogen at a static pressure of 1550 psig was trapped upstream of the speci-
men. The pressure downstream of the specimen went to zero, which was the first
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3.3, Methane Test Results (cont.)

definitive indication that the flow restriction which had developed during the test was
in the specimen, rather than upstream in the preconditioning heat exchanger.

When the flowrate through the specimen stopped, the entire heating
block and test specimen became isothermal at 1250 F. The nitrogen trapped upstream of
the specimen rose in temperature and pressure, reaching a maximum pressure of 4604
psig at a temperature of approximately 1000 F. Still no flow was observed through the
test specimen. Approximately 2000 sec after the start of the test, the heating block and
test specimen had cooled to 500 F. The pressure still remaining upstream of the test
specimen was vented by opening a manual valve.

When the specimen was removed and the cover sheet milled off, the
source of the flow restriction was apparent. The inlet hole into the channel, along with
most of the channel, was completely blocked by a heavy, dense, black deposit. This
deposit was later identified by EDS as Cu3S.

Test M111 was conducted for a total of 1798 sec using technical grade
methane doped with 10 ppm (by volume) methyl mercaptan and a NASA-Z test speci-
men (specimen Z9). The primary objective of this test was to examine the affect of the
addition of a lesser amount of sulfur to the methane.

As in the previous test, a reduction in the flowrate was observed
during the course of the test. However, this time the flow was not completely stopped,
and a long duration test, albeit at a reduced heat flux, was conducted. Figure 41 shows
the flowrate measured during the test. Again, the inlet pressure was constant during
the test at 3500 psig.

The reduction in flowrate was first recognized after approximately 100
sec of operation. The reduction in flow was more gradual than in the previous test, and
the flowrate was reduced to one-half of the initial value after 520 sec of operation. The
flowrate continued to decrease (and the power to the heaters was correspondingly
reduced to maintain a steady wall temperature of 800 F) until at 850 sec of operation,
when a sudden recovery in the flowrate was seen. The flowrate increased from 0.43 to
0.67 Ib/min over the course of 10 sec.
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3.3, Methane Test Results {(cont.)

As before, the flowrate showed a gradual degradation after this sud-
den increase, though the flowrate never again fell below 0.50 Ib/min.

Examination of the specimen showed heavy black deposits in the
channel, similar in appearance to those seen in the previous tests. SEM examination of
the specimen identified the deposits as CuyS. Figure 42 shows that as much as 30% of

the flow area was blocked by the formation of this corrosion product during test M111.

Test M112 was conducted for 1414 sec using technical grade methane
and an Amzirc test specimen. The primary objective of this test was to examine the per-
formance of a specimen at a high heat flux. A maximum steady-state wall temperature
of 778 F and a maximum steady-state heat flux of 52.7 Btu/in.2-sec were achieved. An
important secondary objective of this test was to establish that the system was free of
sulfur before conducting tests with a very low sulfur concentration added to the fuel
and to establish that the apparatus could be decontaminated of sulfur compounds.

Preliminary analysis of the run data showed no evidence of reaction
during the test, i.e., neither the heat transfer coefficient measured between the channel
wall and the coolant nor the pressure drop through the specimen changed during the
test. Visual inspection of the Amzirc specimen showed very minor discoloration in the
channel. Figure 43 shows 35 mm photographs of the specimen taken after completion
of the test. It must be noted that the specimen label shown in the figure is incorrect. It
is Amzirc specimen A24, not NASA-Z specimen Z24.

Test M113 was conducted for a total of 1803 sec using TG methane
plus 1 ppm (by volume) methyl mercaptan and an Amzirc test specimen (specimen
A22). The primary objective of this test was to examine the effect of very low sulfur
concentrations in the fuel on the cooling channel. A maximum steady-state wall temp-
erature of 723 F and a maximum steady-state heat flux of 44.8 Btu/in-2-sec were estab-
lished.

Preliminary analysis of the run data shows a gradual increase in the
heat transfer performance during the test. Figure 44 shows the ratio of the experimen-
tally measured Nusselt number to the predicted Nusselt number over the course of the
test. Two conclusions are evident from Figure 44. First, there is good correlation
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NASA-Z
After Test M111

0080870 EGKQ

NASA-Z
After Test M111
Figure 42. 10 ppm Sulfur in Methane Created Vivid Rosettes of Copper Sulfide in Test M111
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Figure 43. Specimen Tested at Coolant-Side Heat Flux of 52.7 Btu/in2-s
Shows Only Minor Discoloration of Cooling Channel. No
Sulfur Corrosion Was Observed in Test M112, Demonstrating
That the Test Apparatus Could Be Cleaned Effectively
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3.3, Methane Test Results (cont.)

between the measured Nusselt number and the form of the Dittus-Boelter correlation
recommended by earlier work with methane. This is true for all the methane tests con-
ducted. All heat transfer data fell within a band of £ 30% from predicted values.
Secondly, there is an apparent increase in the heat transfer performance of the specimen
during the course of the test. This increase in the heat transfer performance is thought
to be caused by roughening of the walls of the cooling channel, as evidenced in the SEM
photographs.

Posttest visual examination of the specimen showed the channel to be
discolored with a thin, grayish, consistent deposit in all areas in contact with the fuel.
Figure 45 shows 35 mm photographs of the specimen after the test. SEM examination of
the specimen shows evidence of corrosion on the surface of the copper. Figure 46
shows photographs of the bottom of the channel surface taken by the SEM. At low
magnification (30X), many “freckles” are seen on the channel surface. Higher magnifi-
cation (1000X) of one of the freckles shows it to be a crater in the surface of the channel.
Also seen at high magnification are irregularly shaped flakes of material lying on the
surface. These are believed to be flakes which were scoured from the surface by the
flow of coolant and deposited randomly downstream.

EDS analysis of the areas in and around the crater shown in Figure 46
shows the presence of only Cu and S. There did not appear to be a significant variation
in composition between the area just outside the crater as compared with the area in the
crater or the loose flakes.

A review of all the on-line data from the methane dynamic tests and
all the posttest metallographic examinations of the specimen led to the following con-
clusions:

1)  Unadulterated Technical Grade Methane showed no compatibil-
ity problems with OFHC, NASA-Z, or Amzirc. This included
tests at wall temperatures up to 934 F, and coolant side heat
fluxes up to 52.7 Btu/in.2-sec.

2)  Addition of 1% (by volume) ethylene to the methane did not
affect the test results.
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Figure 45. After 1800 sec of Operation with Methane Plus 1ppm Sulfur (Test M113),
an Even, Gray Discoloration was Evident
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3.3, Methane Test Results (cont.)

RPT/D0406.54/33

3)

Addition of 200, 10, and 1 ppm (by volume) CH3SH to the
methane produced severe corrosion of the channel. The sulfur
compound reacted with the copper surfaces of the channel
(corrosion was observed with all three copper materials tested) to
form Cu;S. In the tests conducted with 200 and 10 ppm CH3SH
in methane, the formation of corrosion products was severe
enough to significantly reduce the flowrate through the channel.
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3.0, Task 1—Corrosive Interaction and Corrosion Rate Determination (cont.)
3.4 PROPANE TEST RESULTS

This section of the report discusses the results of compatibility tests with cop-
per and copper alloys in contact with propane. The results of static tests using
Instrument Grade (IG) and Research Grade (RG) propane are covered first, followed by
a discussion of the dynamic tests.

341 Propane Static Tests (Task 1.1.4)

As described in Section 3.1.1, static tests using propane were con-
ducted in an Aminco Bomb Test Apparatus. Coupons of NASA-Z and Amzirc were
exposed to Instrument and Research Grade propane at high temperature (nominally
650 F) and pressure (nominally 3500 psig). This section of the report documents the
results of these static tests.

Seven separate static test runs were conducted with propane. The run
numbers assigned to the propane tests were 106-113 to avoid confusion with the
methane static tests numbers which were being run concurrently. Table 15 summarizes
the run conditions in each of the tests.

Test 106 exposed a NASA-Z coupon to a bomb filled with IG propane.
The bomb was pressurized to 3500 psig at 650 F. Analysis of the gas showed no change,
but the coupon was slightly tarnished during the test, as seen in Figure 47. SEM
analysis of the surface of the coupon confirmed the presence of a slight deposit on the
NASA-Z, but could not identify the elemental composition of the tarnish.

Analysis of the IG propane used in this test showed no sulfur and
very little oxygen, but the water content of 200 ppm was much higher than is typical for
instrument grade. Further tests were conducted with RG propane, including one
conducted to examine if it was indeed the water which caused this tarnish, Test 112.

Test 108 exposed two coupons — one NASA-Z and one Amzirc —to a
bomb filled with only RG propane. The temperature was not well controlled during
this test, and the gas in the bomb reached a maximum temperature of 685 F.
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Before

After
Test 106

Figure 47. NASA-Z Coupon Showed a Slight Deposit After Static Testing
With Instrument Grade Propane (Test 106)

101



3.4, Propane Test Results (cont.)

Both coupons showed evidence of oxidation. Posttest analysis of the fuel indicated a
high level of nitrogen (0.8%) and oxygen (0.1%), which are believed to have been intro-
duced by the contamination of the bomb with air. Both coupons showed dramatic dis-
coloration, ranging from dull yellow to bright blue on various parts of each coupon.
Both coupons also showed a very minor weight gain of 0.0001 g, through this small
change is within the accuracy of the Mettler balance used. The GC analysis of the fuel
showed the formation of ethane during the test, from a starting concentration of 270
ppm to a final concentration of 0.3%. This was the first static test in which a measurable
change occurred in the fuel other than the consumption of a reactive additive such as
oxygen or a mercaptan.

Test 109 repeated the test conditions of the previous run, exposing
two coupons to RG propane. At the end of this run, both coupons showed a very, very
minor tarnish. Figure 48 shows photographs of the NASA-Z coupon before and after
this test. The discoloration of the coupons was somewhat less noticeable than when IG
propane was used in test 106, and much less noticeable than that observed in the
previous test. Both coupons again appeared to be equally affected by the exposure to
the propane and the weight of each decreased by 0.0001 g, though this small of a change
in weight may not be significant due to the experimental error of the balance. GC
analysis of the fuel at the end of the test again showed the formation of a slight amount
of ethane, to a final concentration of 0.3%.

Test 110 investigated the question of whether this change in the fuel
was caused by the presence of the copper, or if it was simply a result of heating the fuel
under pressure in the bomb apparatus. The bomb was filled with RG propane. No
copper coupons were inserted into the bomb. The bomb was subjected to a typical
temperature and pressure cycle, and the fuel was analyzed. Ethane was again
developed during the test, though the final concentration was lower than measured in
tests 108 and 109. The final analysis showed an ethane concentration of 500 ppm. As in
previous tests, no other species were formed in a measurable amount.

Test 111 exposed two coupons to a mixture of 2% propylene and 98%
RG propane. This mixture was made by first condensing 133 mm Hg of propylene from
a measured volume tank into the bomb, and then condensing 129 psi of propane from
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Figure 48. Research Grade Propane Left a Barely Noticeable Deposit on
NASA-Z in Static Test Number 109
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3.4, Propane Test Results (cont.)

this same measured volume tank into the bomb. After the test, both again showed a
very light deposit, though not any more than when the coupons were exposed to
research grade propane without any propylene. The weight of the coupons did not
change significantly, both showing a 0.0001 g loss during the test. GC analysis of the
fuel did not show a change in the ethane concentration during the test.

Test 112 investigated the effect of water in the propane. A bomb was
prepared containing research grade propane with a water content of 2000 ppm. Two
coupons, one NASA-Z and one Amzirc, were placed in the bomb. Deionized water
(0.046 microliter) was added and the bomb was cooled to an internal gas temperature of
-90 F in Dry Ice to freeze the water and a vacuum was pulled on the bomb to remove
any air. The bomb was then chilled by submersion in liquid nitrogen and research
grade propane was condensed into it. After heating, the coupons showed the heaviest
tarnish of any coupons yet tested in a propane environment. Figure 49 shows pho-
tographs of the NASA-Z coupon before and after this test. The NASA-Z and the
Amzirc coupons appeared to be equally tarnished, and they showed weight gains of
0.0004 and 0.0003 g, respectively. SEM analysis indicated that the affect of the propane
plus 2000 ppm water was minimal on the surface of NASA-Z, as shown in Figure 50.
GC analysis of the fuel showed significant formation of ethane, to a final concentration
of approximately 0.5%.

Test 113 exposed two coupons to a bomb containing 94 ppm (by vol-
ume) CH3SH in RG propane. This mixture was made by adding 18 mm Hg of CH3SH
to the bomb and then condensing in RG propane from a measured volume tank. The
bomb was subjected to a typical heating cycle. Examination of the coupons after the test
showed they had acquired an even, dull grey coating (Figure 51), much like those
observed during the mercaptan-containing methane and n-dodecane tests. The NASA-
Z and Amzirc coupons appeared to be equally affected by the test, and they showed
weight gains of 0.00014 and 0.00012 g, respectively. The deposits on the surface of the
coupons were analyzed to be CuS. Analysis of the fuel showed a small concentration
of ethane (0.1%).

The following conclusions were reached regarding the results of the
Static Tests with propane:
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Figure 49. Addition of 2000 ppm Water to Research Grade Propane Produced
a Heavily Tarnished NASA-Z Coupon in Test 112
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Before

After

Figure 50. Even at High Magnification, It Was Difficult to Discern the Affect of
Research Grade Propane Plus 2000 ppm Water on NASA-Z
(Static Test 112)
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Figure 51. Propane Plus 94 ppm Sulfur as Methyl Mercaptan Heavily
Discolored the Surface of NASA-Z in Static Test 113
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3.4, Propane Test Results (cont.)

(1) RG propane forms a very minor deposit on the NASA-Z and
Amzirc at 650 F and 3500 psig.

(2) Addition of 200 ppm water to the propane increases the deposit
formation.

(3) Addition of 2% (by volume) propylene did not affect the test
results.

(4) Addition of 94 ppm CH3SH produces Cu3S on the Cu specimen.
(5) Ethane was formed, but carbon deposition was not observed.

3.4.2 Dynamic Propane Tests (Task 1.2.4)

A series of six dynamic tests was conducted with propane in the
Aerojet Carbothermal Test Facility. The objective of these tests was to investigate the
compatibility of propane with copper chamber liner materials at conditions simulating
those anticipated in the cooling channels of regeneratively cooled LO> /hydrocarbon

booster engines. Table 16 summarizes the tests which were conducted.

Test P101 was conducted for a total of 2039 sec using propane and a
NASA-Z test specimen (Z223). The primary objective of this test was to checkout the
facility with propane at nominal pressure and temperature conditions. A steady state
wall temperature of 640 F was maintained at a steady-state heat flux of 12.5 Btu/in.2-s.
The average fuel velocity through the channel was 150 ft/s, and the propane was
subcooled to -170 F prior to entering the test channel. Analysis of the run data showed
no evidence of reaction during the test, i.e., neither the heat transfer coefficient
measured between the channel wall and the coolant nor the pressure drop through the
specimen changed during the test.

Figure 52 documents the visual appearance of the NASA-Z specimen
after the test. Powdery black deposits were seen in the channel. More dramatic was the
discoloration of the filter downstream of the test specimen, which was distinctly
blackened with a similar powdery substance.

108
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Figure 52. Propane Specimen After 2000 sec at Twall = 640°F (Test P101) Shows
Blackening of the Channel
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3.4, Propane Test Results (cont.)

Posttest SEM analysis of the specimen showed the black scale in the
channel consisted of many small, round nodes of material (Figure 53). EDS analysis of
this scale showed the presence of Cuand S. The atomic ratio of copper to sulfur was
almost exactly 2 to 1, indicating the formation of CuzS. No carbon or oxygen was
detected by EDS analysis.

Test P102 was conducted for a total of 3098 sec using propane and
Amzirc test specimen (A20). The primary objective of this test was to operate propane
at a higher wall temperature to determine whether this would lead to heavier
deposition in the channel and an impact on the heat transfer or pressure drop of the
channel. A steady state wall temperature of 710 F was maintained at a steady-state heat
flux of 25.1 Btu/in.2-s. The average fuel velocity through the channel was 210 ft/s, and
the propane was subcooled to -100 F prior to entering the test channel.

Again, no degradation of the channel performance could be detected
during the run. Posttest inspection showed the channel to be similarly discolored to
that seen in Test P101. As in the previous test, the downstream filter showed more evi-
dence of deposition than did the channel of the specimen. Figure 54 shows pho-
tographs of the upstream and downstream filters after this test.

Test P103 was conducted for a total of 1394 sec using propane and an
Amzirc test specimen (A21). The intent of this test was to operate at higher wall
temperature, as Tests P101 and P102 had not produced conditions which substantially
affected the performance of the test specimen. The maximum wall temperature during
this test was 780 F. A heat flux of 23.1 Btu/in.2-s was attained. Unfortunately, the test
was halted prematurely due to operator error during the changeover from operation in
a recirculating mode (which is done during heat up and cool down of the test section) to
a once-through mode of operation.

The channel and downstream filter again showed discoloration simi-
lar to that discussed in the previous two tests. However, because steady state condi-
tions were not established for this test, no conclusions were drawn about the heat trans-
fer and pressure drop performance of the specimen.

RPT/D0406.54/3.4 1 1 1
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Figure 54. Photos of Upstream (L) and Downstream (R) Filters After Test P102.
Note Heavy Black Discoloration of Downstream Filter
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3.4, Propane Test Results (cont.)

Test P104 was conducted for a total of 3639 sec using propane and a
NASA-Z test specimen (Z20). The primary objective of this test was to repeat the
conditions achieved in the previous test, but this time at steady state conditions. A
steady state wall temperature of 806 F was maintained at a steady-state heat flux of 21.5
Btu/in.2-s. The average fuel velocity through the channel was 185 ft/s. The propane
was subcooled to -130 F prior to entering the test channel.

No degradation of the channel performance could be detected during
the run. As seen in Figure 55, posttest inspection showed the channel to be heavily
discolored — more so than in the previous testing done at lower wall temperatures.
The downstream filter also showed more evidence of deposition than in previous tests.
However, there was no evidence that the powdery deposits were impacting the flow or
heat transfer through the specimen.

A survey was made of the earlier UTRC and Aerojet propane data to
determine why UTRC had reported a significant degradation in heat transfer perfor-
mance at these wall temperatures while we had not yet seen the same phenomenon.
Two operating parameters were found to be different between the current tests and
earlier test programs with propane. The first was subcooling the propane. In tests P101
through P104, the propane had been chilled to between -100 and -170 F prior to its
entrance into the test channel. Previous experimentors had typically tested with
propane entering at ambient temperature, though UTRC had conducted one test and
reported that subcooling the propane reduced the amount of carbon deposits found in
the test section by two orders of magnitude. The second important operating parameter
was fuel velocity. Tests P101 through P104 were operated at mean velocities between
150 and 210 ft/s. Previous testing had been done at typical velocities between 50 and
100 ft/s.

The objective of the next two tests was to investigate whether these
two parameters — fuel temperature and fuel velocity — could impact the results of the
current testing. Test P105 was conducted for a total of 1927 sec using propane and
NASA-Z test specimen (Z21). The primary objective of this test was to operate without
subcooling the propane to determine if this could lead to a degradation in the heat
transfer or pressure drop of the specimen. A steady state wall temperature of 865 F was
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Figure 55. Specimen After Operation With Propane at Tyg) = 806°F
(Test P104) Shows More Discoloration. Still, No Degradation
in Heat Transfer or Flow Performance
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3.4, Propane Test Results (cont.)

maintained at a steady-state heat flux of 20.4 Btu/in.2-s. The average fuel velocity
through the channel was 125 ft/s.

As seen in Figures 56 and 57, a dramatic affect on both the heat
transfer and the pressure drop of the channel was produced in this test. The posttest
appearance of the specimen was also markedly different from that seen in previous tests
using subcooled propane. The deposit formed in the channel was much more massive
and tenacious. Figure 58 shows photos from the SEM examination conducted after
conclusion of the test series. EDS analysis of the material found in the channel showed
the deposit to be only copper and sulfur. Again, no carbon or oxygen was evident. The
upstream and downstream filters were similar in appearance to those taken from
previous tests. The upstream filter was essentially clean, and the downstream filter was
blackened by a powdery substance.

Subcooling the propane, then, did have a beneficial affect on the per-
formance of the cooling channel and in limiting the amount of deposition in the channel.

Test P106 was conducted for a total of 2229 sec using propane and a
NASA-Z test specimen (Z22). The primary objective of this test was to operate at a
lower fuel velocity through the channel to determine if this could lead to a degradation
in the heat transfer or pressure drop of the specimen. A steady state wall temperature
of 626 F was maintained at a steady state heat flux of 16.5 Btu/in.2-s. The average fuel
velocity through the channel was 65 ft/s.

As in Test P105, a dramatic degradation of both the heat transfer and
pressure drop performance of the specimen was observed in this test. Posttest inspec-
tion of the specimen again showed evidence of heavy deposition in the channel. Figure
59 presents SEM photos of the specimen which show the channel to be bridged by a
black deposit. The bridge was hollow and holes could be poked through it easily.
Figure 60 also shows a high magnification view of the material in which the nodal shape
of the material can be seen. Again, EDS analysis showed copper and sulfur only.

At the conclusion of the propane test series, further analysis of the IG
propane was done in an attempt to determine the source of sulfur which appeared in

RPT/D0406.54/3 .4 1 16
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Figure 59. SEM Photo Shows Material Which Bridged Channel During Run Using Sub-Cooled
Propane at Low Velocity (Test P106)
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Figure 60. SEM Shows Channel Surface After Test With Sub-Cooled Propane at Low Velocity
(Test P106). Nodes of Material are Cu2S
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3.4, Propane Test Results (cont.)

each of the six tests. A cylinder of the IG propane was shipped to Dr. Alan Bandy of
Drexel University. Analysis was conducted for CH3SH, COS, and H;,S by gas
chromatography with flame photometric detection. None was found in analysis of the
gas phase. Calibration of the instrumentation by standard addition to butane samples
demonstrated a detection limit of 50 ppb by volume of each of the sulfur compounds.

Thus, it is still uncertain where the sulfur which affected these tests
originated. The apparent increase in the sulfur corrosion observed during the propane
test series indicates it was not a remnant of the sulfur contaminants intentionally
introduced in previous dynamic tests with methane. This hypothesis is further refuted
by the conduct of dynamic test M112, which demonstrated our ability to clean the test
apparatus of sulfur contamination completely. A more promising explanation appears
to be that the gas which was analyzed was not representative of the propane actually
used in the conduct of these dynamic tests because either the particular cylinder
shipped for analysis was not representative of the propane used in the tests or the liquid
phase of the propane contained very much more sulfur than the gas phase.

A review of all the on-line data from the propane dynamic tests and
all the posttest metallographic examinations of the specimen led to the following con-
clusions:

1) All of the propane dynamic tests results were influenced by sulfur
corrosion of the test channels. The source of the sulfur contami-
nation was not definitively isolated, but was likely from the IG
propane used to conduct the test series.

2) Sub-cooling the propane from 70 F to -100 F prior to entering the
test channel significantly reduced the formation of corrosion
products in the channel. This is consistent with trends of test
results reported earlier by UTRC.

3) Reducing the velocity of the propane through the test channel
from 200 to 65 ft/sec significantly increased the formation of cor-
rosion products in the channel. This is also consistent with trends
reported by previous experimenters.
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4.0 TASK2—PROTECTIVE MEASURES DEVELOPMENT AND EVALUAHON

Task 1 established that the dominant corrosive process which occurs between
hydrocarbon fuels and candidate copper-based chamber liner materials is a result of
trace sulfur impurities in the hydrocarbon fuels which react with the copper liner mate-
rial. The objective of Task 2 was to develop and evaluate protective measures against
the corrosive process defined in Task 1. The protective measure chosen was the appli-
cation of metallic coatings to the copper surfaces of the cooling channels. To be effec-
tive, the coating materials chosen must provide resistance to corrosion by sulfur com-
pounds at the temperature and pressure anticipated in cooling channel operation. This
was established for a number of candidate materials through a literature search of the
chemistry of elemental materials (Task 2.1), and was demonstrated in a series of Static
Tests (Task 2.2). Secondly, the materials chosen must be deposited into small, high
aspect ratio cooling channels and must be durable enough to bond onto the cooling
channel surfaces without spalling or cracking at high temperature while high velocity
coolant is forced through the channel. This was demonstrated through a series of
Dynamic Tests (Task 2.3). This section of the report discusses the results from Task 2.

4.1 TASK 2.1—CANDIDATE MATERIAL SELECTION

The prime requirement for the initial selection of protective metallic coatings
for copper alloys is resistance to attack by sulfur-containing compounds which may be
present in hydrocarbon fuels. In the initial selection process, it was assumed that an
adequate manufacturing process exists (or can be developed) for coating copper cooling
channels with the candidate metal. This assumption was verified by discussions with
coatings vendors prior to final selection of the coating materials.

Close coefficient of thermal expansion (CTE) match between the copper alloy
and the metallic coating and high thermal conductivity (TC) for the metallic coating are
important selection requirements as well. Of these, CTE match is more important than
high TC, as the coating is thin enough (approximately 0.1 mil) to avoid a significant
temperature gradient. -Table 17 shows CTE and TC data for ten of the most promising
elements. Copper is shown for comparison.

A survey of metals was made to identify metals with sufficient chemical resis-
tance to sulfur and divalent sulfur compounds to make them suitable as protective
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PHYSICAL PROPERTIES OF CANDIDATE METALS

Element
Copper
Gold
Platinum
Niobium
Tantalum
Rhenium
Iridium
Zirconium
Hafnium

Nickel

TABLE 17

CTE (X 106/C) TC W/CM/K)

16.6
14.2
9.0
7.0
6.5
6.1
6.0
6.0
6.0
13.0

124

4.03

3.19

0.717
0.533
0.574
0.486
1.48

0.233
0.232
0.941

MP (©)
1084.5
1063
1770
2477
2985
3180
2454
1852
2222
1455



4.1, Task 2.1—Candidate Material Selection (cont.)

coatings for hot (up to 1000 F) copper exposed to a hydrocarbon fuel containing trace
amounts of these materials. A summary of this survey follows.

Platinum

Platinum forms two sulfides, PtS and Pt;S3. These compounds are formed by
the action of sulfur on the free metal at elevated temperatures (= 2200 F). Platinum is
slowly attacked by hydrogen sulfide at 750 F and above. Platinum does not form car-
bides.

Niobium

Niobium forms two sulfides, NbS and Nb;S3. These compounds are not
formed directly from the element, but result from the reaction of the pentoxide with
carbon disulfide and hydrogen sulfide.

NbyOs + CS; 1600-2000E 2 NbS + CO; +3/20;

NbyOs +2 HpS 16002000 2 NbS + 2 H20 +3/20;
Niobium reacts with hydrocarbons at 2200 to 2600 F to form carbides.
Tantalum

There are two known sulfides of tantalum, TaS and Ta3S4. These sulfides are
formed from the pentoxide as described for niobium.

Like niobium, tantalum can form carbides by reaction with hydrocarbons at
high temperature (> 2400 F).

Rhenium

Rhenium forms two sulfides, Re;S7 and ReS;. Re;S7 decomposes to ReSp
above 1500 F. ReS; can be formed directly from Re only at high temperature.

Re +25 1500-1800E, ReS,

Rhenium does not form carbides.
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4.1, Task 2.1—Candidate Material Selection (cont.)
Iridium

Iridium forms two sulfides, IrS and IrS;. These compounds are formed by
reaction of iridium oxides with sulfur and hydrogen sulfide at high temperature
(22200 F). The free metal is highly resistant to attack.

Iridium does not form carbides.
Zirconium

Zirconium is capable of forming a wide variety of sulfides, i.e., ZrS;, ZrS3,
Zr353 and Zr3Ss. These compounds are formed by reaction of the hot metal (1220-
2400 F) with sulfur vapor or hydrogen sulfide. At lower temperatures, sulfur or sulfur
compounds have little effect on the metal. Apparently the sulfur atom is too large to
form interstitial solutions with zirconium.

Hafnium

Hafnium is similar in all regards to zirconium.

Nickel

Powdered nickel reacts with molten sulfur to form nickel sulfide, NiS.

Nis) + S =300 E NiS(s)
“powder”

Nickel is attacked by hydrogen sulfide at elevated temperatures. The grain
boundaries are attacked preferentially leading to what is known as “sulfur hardening
The reaction is severe enough that nickel is not recommended for use in a hydrogen
sulfide environment above 600 F.

Ni() + H2S@g) — NiSs) +H2(g)
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4.1, Task 2.1—Candidate Material Selection (cont.)

Note that molybdenum was eliminated from consideration as it is reported to
form MoS; by the action of sulfur vapor on the free metal at 800 F. Tungsten was elimi-
nated from consideration as it is reported to form carbides by reaction with hydrocar-
bons at 800-1000 F. Titanium was eliminated from consideration as it is reported to be
attacked slowly by hydrogen sulfide at room temperature.

Tentative Selection of Candidate Protective Metallic Coatings

Based on the critical assumption that suitable fabrication techniques are
available for applying these metallic coatings to copper alloys, six metals were recom-
mended for evaluation in Task 2, i.e., gold, platinum, niobium, rhenium, iridium and
zirconium. Gold was selected because it appears to have the best combination of chem-
ical inertness, CTE match and TC. Zirconium was selected because it provides the low
cost option and appears to resist sulfur attack by a unique mechanism, i.e., apparently
the sulfur atom is too large to form interstitial solutions in the zirconium, the first step
in the formation of a zirconium sulfide, e.g., ZrSy. Platinum, niobium, rhenium and
iridium were selected because of their apparent chemical inertness and their respective
CTE matches (Pt is best), TC (Ir is best), melting points (Re is best) and cost (Nb is low-
est).

42 TASK 2.2—CHEMISTRY LABORATORY TESTS

Two static tests evaluated the performance of seven materials: gold, zirco-
nium, iridium, platinum, rhenium, niobium, and NASA-Z. Test coupons were cut from
thin (1 mil) foils of gold, zirconium, rhenium, platinum, and iridium. Pure niobium
coupons were cut from a 40 mil thick sheet, and NASA-Z coupons were made from the
20 mil sheet rolled from the billet of material supplied by NASA-LeRC at the beginning
of this program. The NASA-Z coupons were 15/16 in. dia circles with two 1/8 in. holes
cut through them to facilitate hanging them on a support stand. All other test coupons
were 0.5 in. x 0.75 in. rectangles with a single 1/8 in. hole punched through them.

Each static test was conducted in an environment of UHP methane with 500
ppm of sulfur (by volume). The first test used CH3SH as the sulfur-containing
contaminant, the second used HS. The nominal test conditions targeted were identical

to the static tests of Task 1, i.e., 650 F at 3000 psig for 30 min. The total duration of each
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4.2, Task 2.2—Chemistry Laboratory Tests (cont.)

static test was approximately 2.5 hr, consisting of a 90 min ramp up to temperature, 30
min at nominal test conditions, and a 30 min cool down cycle to 100 F.

Prior to the static tests, each test coupon was degreased, cleaned, rinsed and
dried. Scanning electron micrographs were taken of an area on each coupon at 50, 400
and 2000X. The area photographed was marked by a microscopic scratch made in the
surface of each coupon, so that the same area could be identified and examined after the
tests. Finally, each coupon was weighed to the nearest 0.0001 g on a Mettler balance,
placed on a stainless steel support stand, and the stand was inserted into the bomb.

Test M201 tested coupons of the seven candidate materials in a bomb
containing UHP methane with 506 ppm (by volume) sulfur as CH3SH. This
environment was established by drawing a vacuum on the bomb, adding 37 mm Hg of
CH3SH, and then pressurizing the bomb to 1217 psia with UHP methane. The bomb

was then placed into the oven and the test cycle was started.

During the test, it became apparent that a small leak had developed in the
bomb seal. As the temperature increased in the bomb, the pressure did not rise as much
as was expected, reaching a maximum of 1938 psia, as opposed to the 2900 psia antici-
pated. Figure 61 shows the temperature and pressure traces of the test.

After the bomb had been maintained at the nominal test conditions for 30
min, the bomb was removed from the oven, and cooled in air for approximately 10 min,
until the temperature reached 500 F. The bomb was then partially submerged in water
to cool it more quickly. When the gas temperature inside the bomb reached 100 F, the
methane was vented, and the bomb was opened.

Posttest visual inspection of the coupons showed the NASA-Z had developed
the characteristic steel grey discoloration resulting from exposure to the sulfur-contami-
nated methane. The zirconium coupon also showed some slight tarnish during the test.
All other materials tested (gold, platinum, iridium, rhenium, and niobium) showed no
visible changes had occurred during the test. Photographs of the specimens were taken
with a 35 mm camera and with a SEM to document their surface condition.
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4.2, Task 2.2—Chemistry Laboratory Tests (cont.)

Figures 62 and 63 are photographs of the gold specimen taken from Test
M201. Figure 62 shows that the specimen was crinkled during the test (the specimen
was a very thin, delicate foil), but still appeared shiny and unaffected. Figure 63 shows
SEM photographs of the same specimen taken before and after the test. These confirm
that the gold was not affected by exposure to methane plus CH3SH in Test M201.

Figures 64 and 65 are photographs of the zirconium specimen from Test
M201. Figure 64 shows that a visible tarnish was formed on the zirconium. However,
no evidence of a surface deposit or surface reaction was seen during examination under
the SEM, as documented in Figure 65.

Figures 66 and 67 are photographs of the iridium specimen from Test M201.
Figure 66 shows that the specimen was not visibly changed during the test. Figure 67
confirms this. Even very small surface features appear identical in the SEM photos
taken before and after the test.

The appearance of the gold and iridium are in vivid contrast with the posttest
appearance of the NASA-Z coupon, shown in Figures 68 and 69. Figure 68 shows the
NASA-Z developed an even grey discoloration during Test M201, and the SEM
photogréﬁtg "(Figure 69) show the entire surface has been affected by reaction with the
CHj3SH which was added to the bomb.

Table 18 shows the weight of each coupon measured before and after the test.
Only the NASA-Z coupon showed a significant weight change, gaining 0.0023 g during
the test. Note the iridium coupon decreased by 0.0005 g, but this is probably because
the top of the coupon was torn while removing it from the test rack, and the final
coupon weight was not valid. The weight of all the other coupons did not change.

Test M202 tested coupons of the seven candidate materials in a bomb
containing UHP methane with 497 ppm (by volume) sulfur as H,S. This environment
was established by drawing a vacuum on the bomb, adding 37 mm Hg of HjS, and then
pressurizing the bomb to 1240 psia with UHP methane. The bomb was then placed into
the oven and the test cycle was started.
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Figure 62. Gold Appeared to Be Unaffected By Exposure to UHP Methane Plus
500 ppm Methyl Mercaptan (Test M201)
B = Before Test; A = After Test
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Gold
Before
Test M201
(400x)

Gold

After

Test M201
(400x)

Figure 63. Gold Showed No Evidence of Reaction With UHP Methane Plus
500 ppm Methyl Mercaptan in Test M201
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Figure 64. Zirconium Developed a Slight Tarnish But No Measureable Weight
Change When Exposed to UHP Methane Plus 500 ppm Methyl
Mercaptan (M201). B = Before Test; A = After Test
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Zirconium
Before
Test M201
(400x)

Zirconium
After

Test M201
(400x)

Figure 65. Though Zirconium Formed a Visible Tarnish, the Surface Looks

Unchanged After Test M201
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Figure 66. Iridium Appeared Unaffected By Exposure to UHP Methane Plus
500 ppm Methyl Mercaptan (Test M201)
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Iridium
Before
Test M201
(400x)

Iridium
After

Test M201
(400x)

Figure 67. Iridium Appeared to Be Unaffected in Test M201
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Figure 68. NASA-Z Showed Characteristic Grey Discoloration When Exposed
to UHP Methane Plus 500 ppm Methyl Mercaptan (Test M201)
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NASA-Z
Before
Test M201
(400x)

NASA-Z
After

Test M201
(400x)

Figure 69. A Layer of Copper Sulfide Covered the Surface of
NASA-Z After Test M201
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Test M201

Gold
Zirconium
Iridium
Platinum
Rhenium
Niobium

NASA-Z

Test M102

Gold
Zirconium
Iridium
Platinum
Rhenium
Niobium

NASA-Z

SUMMARY OF COUPON WEIGHTS

TABLE 18

Coupon Weight, g
Before After
0.1241 0.1241
0.0408 0.0408
0.1365 0.1360*
0.1528 0.1527
0.0648 0.0647
4.7111 4.7112
1.6718 1.6741
0.1193 0.1195
0.0429 0.0430
0.1394 0.1395
0.1485 0.1485
0.0647 0.0647
5.0826 5.0828
1.6565 1.6614

-
>

Weight
Change, g

0.0000
0.0000
-0.0005*
-0.0001
-0.0001
+0.0001
+0.0023

+0.0002
+0.0001
+0.0001

0.0000

0.0000
+0.0002
+0.0049

*Coupon was torn during removal from bomb. Final weight is too low.
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4.2, Task 2.2—Chemistry Laboratory Tests (cont.)

The cause of the leak which occurred during test M201 was eliminated prior
to this test, and the pressure and temperature rose as planned. Figure 70 shows the
temperature and pressure traces of the test. After the bomb had been maintained at the
nominal test conditions of 650 F and 2900 psig for 30 min, the bomb was removed from
the oven, and cooled and opened as in the previous test.

Posttest visual inspection of the coupons again showed the NASA-Z had
developed the characteristic steel grey discoloration resulting from exposure to sulfur-
contaminated methane. The zirconium coupon also showed some slight tarnish during
the test. All other materials tested, gold, platinum, iridium, rhenium, and niobium,
showed no visible changes had occurred during the test. Again, photographs were
taken of each specimen with a 35 mm camera and a SEM.

Figure 71 shows that the appearance of the platinum specimen did not change
during Test M202. However, posttest SEM examination revealed one isolated area of
reacted material on the platinum specimen, as shown in the photographs of Figures 72
and 73 EDS analysis of this area showed the presence of copper, sulfur, and platinum.
EDS analysis of other regions of the specimen did not find any evidence of anything
other than platinum. The isolated nature of the area, and the analysis which showed it
to contain copper, suggests that the platinum specimen touched the NASA-Z specimen
at some point during the test, resulting in a microscopic region of copper contamination
on the surface of the platinum specimen.

Figure 74 shows the appearance of rhenium was unaffected during Test
M202. SEM examination showed a very minor surface deposit had developed over the
entire rhenium specimen, as shown in Figure 75. No analysis was conducted to
determine the nature of this deposit.

Figure 76 shows the appearance of niobium was unaffected during Test
M202. SEM examination confirmed that there was no evidence of reaction during the
test, as documented in Figure 77.

Again, the posttest condition of the NASA-Z specimen exposed in Test M202
offers sharp contrast to the other materials tested. Figure 78 shows the even grey
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Figure 71. Platinum Appeared Unaffected When Exposed to UHP Methane
Plus 500 ppm Hydrogen Sulfide (Test M202)
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Platinum
Before
Test M202
(400x)

Platinum
After

Test M202
(400x)

Figure 72. Platinum Appeared to Have an Area of Reacted Material in Test M202
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Platinum
Before
Test M202
(200x)

Platinum
After

Test M202
(2500x)
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Figure 73. Further Inspection and EDX Analysis Showed the Platinum Coupon
to Have a Small Region of Copper Sulfide on its Surface
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Rhenium
Before
Test M202

Rhenium
After
Test M202

Figure 74. The Appearance of Rhenium Did Not Change During Test M202
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Rhenium
Before
Test M202
{400x)

Rhenlum
After

Test M202
(400x)

Figure 75. SEM Photos Show a Very Minor Deposit Developed on
Rhenium in Test M202
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Figure 76. Niobium Appeared Unaffected When Exposed to UHP Methane
Plus 500 ppm Hydrogen Sulfide (Test M202)
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Niobium
Before
Test M202
(400x)

Niobium
After

Test M202
(400x)

Figure 77. Nioblum Surface Was Unaffected During Test M202
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Figure 78. Hydrogen Sulfide in Methane (Test M202) Produced the Same
Appearance of NASA-Z as Previous Tests With Methyl Mercaptan
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4.2, Task 2.2—Chemistry Laboratory Tests (cont.)

discoloration which developed during Test M202. SEM examination (Figure 79) again .
showed the formation of CuyS over the entire surface of the NASA-Z coupon.

Table 18 shows the weight of each coupon measured before and after the test.
Only the NASA-Z coupon showed a significant weight change, gaining 0.0049 g during
the test. The weight of all the other coupons did not change.

The Static Tests demonstrated that gold, platinum, iridium and niobium were
inert to reaction with sulfur compounds at these temperatures and pressures. Rhenium
and zirconium also appeared to withstand the static environment with only minimal
change to the surface. A selection of two materials for use in the next phase of the test
program was made based on the maturity of the manufacturing processes which existed
for the application of these metals to the copper cooling channels. The two metals cho-
sen were gold and platinum, because electrodeposition of these metals onto copper had
been demonstrated.

4.3 TASK 2.3—THERMAL SCIENCES LABORATORY TESTS

The next steps in the program were to apply gold and platinum coatings to
copper cooling channels and to conduct dynamic tests in the Aerojet Carbothermal Test
Facility. The objective of these tests was to demonstrate that coatings could provide

corrosion protection from sulfur compounds in methane under realistic service condi-
tions of a regeneratively cooled LO,/methane booster engine.

Two series of dynamic tests were conducted in Task 2. The first series (tests
M201 - M206) used specimens with gold and platinum coatings in the channel and an
uncoated OFHC closeout. Thus, three sides of the channel were coated, and the fourth
side was to serve as a control, demonstrating what would happen to uncoated copper at
these conditions. However, corrosion of the uncoated portion of the channel was severe
enough to affect the interpretation of test results. It proved to be difficult to determine
conclusively the protective ability of the coatings with the presence of the corrosion
products. Therefore, a second series of dynamic tests (tests M207 - M208) was con-
ducted with a modified specimen design which eliminated all contact between the fuel
and uncoated copper surfaces. The new design replaced the OFHC closeout with a

RPT/D0406.54/4.0 ' 150



ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAFH

NASA-2Z
Before
Test M202
(400x)

NASA-Z
After

Test M202
(400x)

Figure 79. SEM Photos of NASA-Z Show Formation of Copper
Sulfide Over Entire Surface
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

CRES 304 closeout and fuel inlet/outlet manifold. The other three sides of the channel
were protected with gold coatings as before.

All tests were conducted with Technical Grade Methane with between 5 and
10 ppm (by volume) of a sulfur compound. Table 19 summarizes the test conditions in
the Task 2 Dynamic Tests.

The dynamic test specimen for tests M201-M206 were machined and stainless
inlet and outlet tubes brazed into the ends as in Task 1. Protective metallic coatings of
gold and platinum were then applied to selected specimen. The three-sided, open
channel and approximately 0.050-in. of land width on either side of the channel were
electroplated by dalic plating. Four specimens were coated with gold (with an
underlying layer of nickel to serve as a diffusion barrier), and four specimens were
coated with platinum (with underlying layers of nickel and gold for protection of the
channel while plating with platinum from an acidic plating solution). Figure 80 shows
one of the specimens after being coated with nickel and gold.

The coatings were then examined under a SEM. Two purposes were served
by this examination. The “before” appearance of each channel was documented, and
the examination established that the coatings were free of voids or cracks which
extended to the copper substrate. The appearance of the coating showed some variation
from specimen to specimen. Representative SEM micrographs of the channel surface is
shown in Figure 81. The most prevalent feature of the specimens is the lumpy, uneven
appearance of the coating. Subsequent examination of the channels in cross section has
shown this to be from a very uneven, lumpy deposition of nickel on the copper. The
gold and platinum layers went down relatively smoothly.

After inspection of the channel surfaces, an uncoated OFHC closeout was
electron beam welded over the channel at a distance of 0.020-in. outside the coating.
One gold coated specimen was sacrificed at this point and sectioned to determine if the
welding process had any affect on the condition of the coating.

No change in the coating was noted as a result of the welding.
However, the post-weld cross section showed a significant variation in the thickness
and quality of the coatings from the top to the bottom of the channel, as seen in
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Amzirc with Ni-Au Coating Pre-Test M201-M206

Figure 80. Dynamic Test Specimen Channels Were Electroplated
With a Nickel Flash, Followed by Gold
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

Figure 82. Along the channel land, and for approximately the first 5 mils into the
channel, the coating was uniform, and the gold layer was close to the nominal specified
0.00025-in. thickness. Further into the channel, however, the gold thickness decreased
substantially, though it did appear to be continuous, even in the corners of the channel.
As well, the nickel diffusion barrier, which was relatively smooth, thick (0.0005-in.) and
free of voids on the lands and near the top of the channel, was lumpy, poorly adherent,
and discontinuous near the bottom of the channel.

The dynamic test specimen for tests M207 and M208 were fabricated
somewhat differently. Figure 83 shows sketches of the modified test specimen. The
most important change was to replace the copper closeout sheet with a CRES 304 close-
out and fuel manifold which was electron beam brazed into place. This eliminated all
contact between the intentionally contaminated fuel and uncoated copper.

Six specimens of this modified design were machined. Two were used for
evaluation of alternate dalic plating techniques in an effort to improve the quality of the
nickel and gold coatings deposited into the channel. Particular emphasis was placed on
improving the nickel coatings.

The earlier specimens were dalic plated using an alkaline nickel solution.
This process was used because it has high “throwing power” which may produce more
thorough coverage in the bottom and corners of the channel. Unfortunately, the
alkaline nickel baths also deposit material with large grains, leading to the lumpy,
uneven surface shown in Figure 81.

Due to the problem with the large nickel grains, it was decided to investigate
the use of an acidic nickel plating bath. This plating process produces a deposit with a
much finer grain size but has a much slower deposition rate than the alkaline bath. It
was expected that the small grain size would cover the bottom of the copper channel
but not produce the large nodules that were seen in the earlier parts.

Three samples were prepared in order to compare the different processes.
Sample A was prepared using the alkaline nickel plating bath. Sample B was plated
using an acidic nickel bath. Sample C used a combination of both the alkaline
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

and the acidic processes. The fine grained acidic technique was used to cover the cop-
per surface and was followed by plating with the alkaline method. All three specimens
were then coated with gold as before.

After coating, the three samples were sectioned for metallographic
examination. Figure 84 shows results from the examination of Sample A. Figure 84a
shows a cross section of a bottom corner of the channel, while Figures 84b and 84c show
X-ray dot maps of nickel and gold, respectively. Both the nickel and gold are seen to
have reached the corner and the bottom of the channel.

Figure 85 shows results from the examination of Sample B. Figure 85a shows
no nickel detected near the bottom of the channel. Figure 85b shows a nickel Ky X-ray
trace with no detected nickel. The increase in intensity at the right of Figure 85b is due
to the additional background from the copper K¢, adjacent to the nickel energy level, not
to nickel detection.

Figure 86 shows the cross sections of Sample C. As can be seen, the surface is
very uneven and the gold (bright areas) has not covered the channel bottom completely.

It was decided that the original alkaline process for nickel deposition was the
best of the three alternatives investigated as a result of these examinations. The
remaining four specimens were coated by this process. Pre-test inspections of these
specimens will be presented and disscussed along with the results from Tests M207 and
M208.

Test M201 was conducted with an uncoated specimen as a final checkout of
the recommissioned test facility. The test was conducted for 1169 sec at a nominal
coolant side wall temperature of 730 F. A slight increase in the pressure drop through
the channel was measured during the test, but no significant heat transfer degradation
was measured (Figure 87).

After the test, the channel was heavily blackened and scaly deposits had
formed on the channel walls. Examination under SEM showed that the channels walls
had become roughened and showed that the scaly deposits in the channel consisted of
copper and sulfur (Figures 88 and 89).
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Channel. (b) Nickel Dot Map of (a). (c) Gold Dot Map of (a).
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

Test M201 indicated that there was a problem with sulfur contamination in
the system, but how the sulfur got there was still unknown. Sulfur contaminants
intentionally added during the last test series may have not been completely removed
from the tubing and/or high pressure tanks of the system, or new sulfur contaminants
could have been introduced by the methane which was used in this series of tests.

A simple test showed that the sulfur contamination observed in Test M201
probably originated in the high pressure tanks of the system. The gas vented directly
from the high pressure tanks smelled slightly of sulfur. The odor was no worse after the
gas was routed from the high pressure tanks through the tubing upstream of the test
block. No odor was detected from the methane vented directly from the low pressure
cylinders supplied by the vendor. As a result of this first test, the entire system,
including all tubing and the high pressure cylinders, was vented and subjected to a 50
micron vacuum for three days. Afterwards, no odor of sulfur compounds was detected
in or around the system.

Test M202 was conducted with a gold-plated Amzirc specimen (Specimen
A51) and technical grade methane with 5 ppm (by volume) CH35H added. The test was

conducted for 1494 sec at a nominal coolant side wall temperature of 765 F.

During the test, some degradation was observed in the flowrate through the
channel (though not as much as with the uncoated specimen run in Test M201) and a
slight decrease in heat transfer performance was also noted (though again, not as much
as in Test M201). Figures 90 and 91 show these performance trends for the tests run
with methane plus methyl mercaptan.

Posttest metallographic examination of this specimen showed the gold
coating was mostly unaffected by the test. Figure 92 shows SEM photographs looking
down into the channel at the coated surface, before and after the test. As discussed
previously, the rocky appearance of the surface is due to nodules of nickel deposited in
the bottom of the channel which were covered with a thin gold coating. At high
magnification, it appears that the thin gold coating covering the nickel nodules
ruptured during the test. This is documented in Figure 93. Another area of interest was
found on the wall of the channel, near the land. In Figure 94, it appears that the coating
disbonded from the channel wall. It is not known with certainty if this disbond
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

occurred during the course of the test, or if it happened during the removal of the cover
sheet. However, EDS analysis of the sidewall underneath the disbonded coating shows
the presence of CujS, which appears to have formed during the test. This indicates that
the disbond occurred before the removal of the cover sheet.

Test M203 was conducted with a platinum-coated NASA-Z specimen (Z53)
and technical grade methane with 5 ppm (by volume) CH3SH. The test was conducted

for 1160 sec at a nominal coolant side wall temperature of 727 F.

During the test, some degradation was observed in the flowrate through the
channel (though not as much as with the uncoated specimen run in Test M201). No

degradation of the heat transfer performance was measured. Figures 90 and 91 show
these performance trends for the tests run with methane plus CH3SH.

Posttest metallographic examination of this specimen showed the platinum
coating was virtually unaffected by the test. Figure 95 shows a SEM photograph
looking down into the channel at the coated surface, before and after the test. Athigh
magnification, Figure 96, there appear to be a number of fuzzy, lichen-like deposits on
the platinum surface. EDS analysis did not show a significant difference between the
fuzzy deposits and the surrounding areas. Both areas appeared to be primarily
platinum, with some copper and sulfur detected. This may be a result of copper sulfide
deposits from the uncoated surfaces of the channel.

At the conclusion of Test M203, the run cylinders were vented and the entire
system was subjected to a 50 micron vacuum for more than 80 hr in preparation for
changing the sulfur contaminant in the system.

Tests M204 through M206 were conducted with H,S as the sulfur-containing

contaminant. Test M204 was conducted with an uncoated Amzirc specimen (Specimen
A61) and TG methane with 5 ppm (by volume) H3S. The test was conducted for 585 sec

at a nominal coolant side wall temperature of 808 F.

The test duration was much shorter than normal because of severe flow
degradation through the channel. At the start of the test, the flowrate through the test
specimen was 1.1 Ibm/min. However, within 100 sec of the beginning of the test, the
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

flow through the channel had decreased to 0.7 Ibm/min. The flowrate continued to
decrease steadily, dropping below 0.5 Ibm/min after 200 sec of operation. Continuous
adjustment of the valve controlling the exit pressure of the methane to 1000 psig became
necessary as the flowrate continued to decrease. The test block heaters were shut off
approximately 450 sec into the test in anticipation of a premature shutdown. After 585
sec of operation, as the flowrate had dropped below 0.2 Ibm/min, the methane run
valve was closed and GN2 was run through the system to purge the test specimen.

Figure 97 shows plots of the flowrate through the channel in the test series
conducted with methane contaminated with hydrogen sulfide. Figure 98 presents the
heat transfer performance measured in this series of tests.

Posttest inspection of the uncoated specimen showed the channel to be filled
with CuyS. SEM photographs of the channel surface are presented in Figure 99. Note
the characteristic morphology of the material, which EDS analysis showed to be entirely
Cu and S. Though the aspect ratio of the deposit structures are different, the
morphology is reminiscent of the “barnacles” and the “rosettes” observed in tests with
RP-1 plus n-dodecanethiol and methane plus high levels (10 and 200 ppm) of CH3SH.

It is also significant to note that only 5 ppm of H;S was enough to cause
nearly complete blockage of the test channel. The Dynamic Tests of Task 1 with
methane plus CH3SH under similar conditions of inlet pressure, temperature, and
initial flowrate indicated that more than 10 ppm of sulfur was required before complete
blockage of the channel would result. In addition, the Static Tests of Task 2 showed that
NASA-Z coupons were more reactive (i.e., gained more weight) in a static environment
containing HS than in a static environment containing an equal concentration of

CH3SH. Thus, H3S may be an even more harmful sulfur contaminant than CH3SH.

Test M205 was conducted with a gold-coated Amzirc specimen (Specimen
A52) and TG methane with 5 ppm (by volume) H3S. The test was conducted for 960 sec

at a nominal coolant side wall temperature of 760 F.

During the test, the flowrate through the channel was very steady as shown
in Figure 97, indicating that the gold coating was very beneficial in preventing reaction
of the H,S with the Cu substrate. However, the heat transfer performance of the
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

specimen steadily decreased, as shown in Figure 98. Posttest analysis shows this was
probably caused by a thick layer of CuyS deposited over all surfaces.

Posttest analysis of this specimen showed that the gold coating had
apparently held up well during the test, but that it had become covered by a layer of
CusS. Figure 100 documents the appearance of the channel surface before and after the

test.

These surface deposits were further examined by preparing a cross section
taken from the middle of the channel of the Au plated specimen tested in Run M205

(Specimen A52). Figure 101 shows an overview of the channel cross section. Note how
thick and evenly distributed is the dark grey Cuj;S layer, Figure 101. A portion of the

Cu closeout sheet is also shown . The closeout sheet is severely corroded, with similar
deposits on all exposed surfaces.

Test M206 was conducted with a platinum-coated NASA-Z specimen (Z50)
and TG methane with 5 ppm (by volume) H3S. The test was conducted for 1344 sec at a

nominal coolant side wall temperature of 792 F.

As in Test M205, the flowrate through the channel in Test M206 was very
steady, as shown in Figure 97. Again, however, the heat transfer performance of the
specimen steadily decreased, as shown in Figure 98.

Posttest analysis of this specimen showed that the platinum coating had
apparently held up well during the test, but that it had become covered by a thick layer
of CuyS. Figure 102 documents the appearance of the channel surface before and after

the test.

Both the gold and the platinum coatings were of significant benefit in
preserving the flowrate through the specimen in the test series with HS. However, the
formation of the even, consistent deposit of CuyS over the entire plated surface in Tests

M205 and M206 was difficult to explain with certainty.

The deposit covering the Au layer of the channel was analyzed by X-ray
diffraction and was identified unequivocally as CupS. This is consistent with the pre-

vious findings from this program and suggests that metallic copper (or copper alloy)
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

reacted with the HpS in the CHy to produce this CupS. The focus of this investigation
then shifted to determine where the Cu which reacted with the HS originated. Three
general hypotheses were tested:

(1) General failure of the coating, by mechanical or corrosive forces, which
led to exposure of the substrate.

(2) Cracks or voids in the as-deposited coating which did not provide a
continuous layer of protection to the substrate.

(3) Reaction of the uncoated Cu surfaces of the close out sheet and inlet and
exit holes of the specimen.

It did not appear that the CuyS resulted from a general failing of the
protective coating. SEM examination of the cross sectioned Au specimen shows the
coating held up without evidence of serious deterioration. For example, in Figure 103,
the Au coating can be seen underneath the CusS layer. It appears to be smooth and in
good condition. As well, the tests conducted with CH3SH as the sulfur contaminant did
not appear to attack the coating materials aggressively.

Cracks in the coatings may have been responsible for at least some of the
CuyS. As seen in Figures 102 and 103, there are numerous locations around the channel
where cracks developed in the coatings. There appears to be a void in the substrate
underneath each of the cracks. Figure 104 presents an enlargement of one of the areas.
As previously noted, pretest inspection of the coatings did show cracks in the coatings,
but no voids in the substrate. Thus, the formation of the void under the coating may
have occurred during the test as a result of reaction of the substrate with contaminated
fuel. However, the amount of Cu,S on the surface appears to be much more than that
which could have been formed from the reaction of the substrate in the small, localized
voids, unless the voids are much larger in other planes of the specimen. It appears that
cracks in the coatings may be responsible for some, but not all, of the Cu2S which was
formed on the surface of the specimen.

Reaction of the uncoated copper from the closeout sheet and the inlet and
outlet holes was probably responsible for most of the Cuz5 found on the surface. The
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Figure 103. Cross-Section of Channel Corner After Test With 5 ppm H2S (Test M205).
Note Massive CusS Layer Over the Bright Gold Coating
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

closeout sheet of the Au coated specimen used in Test M205 was badly corroded by
reaction with the HS. Test M204 also demonstrated that uncoated Amzirc was very
reactive with 5 ppm HjS in CHy at these conditions. While the uncoated closeout sheet
did provide an opportunity for direct comparison of uncoated versus coated surfaces in
this environment, its corrosion also clouded the results of the experiment. Subsequent
testing was conducted with coated channels (M207-M208) protected on all surfaces
exposed to the contamination fuel.

Test M207 was conducted with a gold-plated NASA-Z specimen (Z-013) and
TG methane with at least 5 ppm (by volume) H,S added. The test was conducted for
1484 sec at a nominal coolant side wall temperature of 735 F. No degradation was
observed in the flowrate through the channel or in the heat transfer performance
through the channel during the test.

Test M208 was conducted with a gold-plated NASA-Z specimen (Z-005) and
TG methane with at least 10 ppm (by volume) H,S added. The test was conducted for
1041 sec at a nominal coolant side wall temperature of 730 F. No degradation was
observed in the flowrate through the channel or in the heat transfer performance
through the channel during the test.

Detailed posttest metallographic analysis of the specimens was conducted. In
preparation for analysis, the stainless steel (CRES 304) cover plates were machined off
in order to evaluate the condition for the channels, Figure 105. The CRES 304 cover
plate was also removed from one of the untested specimens for comparison, Figure
105a. The dark pattern associated with the channel in Figures 105b and 105c is
apparently as a result of the propellant seeping under the cover plate during testing.
The transverse dark markings seen in Figure 105¢ are guide lines drawn on the sample
for cross sectioning. The channels were examined with the use of a SEM and energy
dispersive X-ray spectroscopy (EDS). In addition, these samples were sectioned and
prepared for metallographic evaluation.

Figure 106 shows typical features of the surface of untested specimen. The
nodular structure as seen before with gold on nickel is evident. The apparent hole or pit
in the gold coating (Location A in Figure 106b) was examined carefully. An EDS spectra
at this point is shown to be primarily gold, with traces of copper and nickel. The
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Figure 105. Disassembled Test Specimens Before and After Testing. a) Fabricated
But Untested. b) Tested With 5 ppm Hydrogen Sulfide (Test M207).
c) Tested With 10 ppm Hydrogen Sulfide (Test M208). Note: Transverse
Marks on (c) and Guidelines for Sectioning
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

amount of copper and nickel was not appreciably more than in the EDS of other
sections of the coating, indicating that it resulted from penetration of the beam into
underlying layers of nickel and copper through the thin gold coating. Copper and
nickel were not exposed, even at the bottom of the hole. No sulfur was found on the
untested sample, but a small amount of chlorine was detected. The chlorine was most
probably a residue contaminant from the plating process.

Cross sections of the untested specimen were also prepared and examined
under the SEM to determine if the coverage of the channel surface was complete.
Figure 107 shows three photomicrographs of a cross section from the middle of a
channel of an untested specimen. A crack in the coatings was evident down the length
of the specimen under the top corner of the channel. This crack developed during
assembly or disassembly of the stainless steel specimen closeout. However, other than
this crack, the coverage of the gold coating was very complete, with no evidence of
cracks or voids between it and the underlying nickel diffusion barrier. Particularly
impressive was the good coverage of the bottom of the channel, demonstrating excellent
“throwing power” of the electrodeposited gold. The nickel diffusion barrier was quite
lumpy, consistent with the findings from earlier in the program.

Two interesting features of the coatings are shown in Figure 107c. The first is
the thin layer of gold which has apparently diffused through the nickel and into the
copper substrate. This diffusion layer was found in the specimens after the stainless
steel closeout was electron beam brazed into place. Apparently this process applied
enough heat to the part to cause partial diffusion of the coatings into the substrate.
Note also in Figure 107a that the region of diffused gold extends about three fourths of
the distance up the side of the channel walls, and gradually lessens to zero near the top
of the channel, where the nickel diffusion layer is thickest. The second feature of
interest is the interface between the copper substrate and the nickel diffusion barrier
shown in Figure 107c. It appears that the nickel is poorly bonded to the substrate, with
many voids along the interface . In fact, the dark areas are particles of alumina (Al,O3),
imbedded in the surface of the copper by the plating vendor, who grit blasted the
copper surface just prior to applying the electrodeposited coatings.
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

Figure 108 shows the surface of the channel after testing with TG methane
plus 5 ppm H3S (Test M207). Note that the surface was virtually unaffected and
appeared very similar to the untested surface. Also, a crack in the coatings was evident
at the top corner of the channel. Again, this was caused by the mechanical assembly
and disassembly of the test specimen, and not a result of the test conditions.

Cross sections of this specimen confirmed that the coating held up well
during test M207. Figure 109 presents three photomicrographs of a cross section cut
from the middle of the channel. Even at the bottom of the channel, where the coatings
were the thinnest, the coating was unbreached and no corrosion of the copper channel
was seen.

Figure 110 shows the surface of the channel after testing with TG methane
plus 10 ppm HjS (Test M208). Again, at low magnification (100X) the surface appeared
virtually unaffected, with the dominant feature being the crack at the top corner from
assembly and disassembly of the specimen. At higher magnification (500X) it appeared
that a thin scale has formed evenly over the coating surface. At very high magnification
(1200X), some definition of this thin scale was obtained. EDS analysis was performed at
locations A, B, and C of Figure 110c. Location A showed a high sulfur content, with
evidence of both copper and nickel. This area may be a combination of copper and
nickel sulfides, though no analysis was conducted to determine how the sulfur was
bound. Locations B and C gave EDS spectra which were close to the nominal spectra of
untested coatings, with the exception that there was a very small amount of sulfur
found in both locations.

Cross sections of this specimen confirmed that the coating held up well
during test M208. Figure 111 presents three photomicrographs of a cross section cut
from the middle of the channel. Even at the bottom of the channel, where the coatings
were the thinnest, the coating was unbreached and no massive buildup of corrosion
products was detected.

One final comparison should be drawn between the posttest condition of the
uncoated channel, the channel which had coatings on only three sides, and the channel
which had coatings on three sides with a stainless steel closeout. A cross section of each
is shown in Figure 112. Each of these specimens was tested with TG methane con-
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Figure 109. Cross Section of Sample After Test With 5 ppm Hydrogen
Sulfide in Methane (M207)
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4.3, Task 2.3—Thermal Sciences Laboratory Tests (cont.)

taining 5 ppm H3S, at similar temperature, pressure, and flow conditions (Tests M204,
M205, and M207, respectively). Note the massive buildup of cuprous sulfide on the
uncoated specimen of Figure 112a, which completely blocked the channel flow within
600 sec of operation. In Figure 112b, the coating appeared to resist attack, but was
covered with a thick layer of cuprous sulfide, probably from corrosion of the uncoated
closeout. Lastly in Figure 112c, a relatively clean coating, i.e., a gold coating with no
cuprous sulfide deposit, was found intact after the test using a specimen with a stainless
steel closeout. It is concluded, therefore, that the feasibility of using gold to prevent
attack of the copper substrate has been demonstrated. However, development of a
practical, reliable method for the application of a protective gold coating to the inside of
small, high aspect ratio copper alloy channels, remains to be accomplished.
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5.0 TASK3—PROTECTIVE MEASURES VERIFICATION PROGRAM

The objective of Task 3 is to recommend and plan a test program for the verifica-
tion of the protective measures demonstrated in Task 2 under actual engine operating
conditions. One subtask was conducted to achieve the objective of Task 3, i.e., Task 3.1,
Program Plan Preparation.

5.1 TASK 3.1—PROGRAM PLAN PREPARATION

A program plan and cost estimate were prepared for the verification of pro-
tective coatings as applied to cooling channels as demonstrated in Task 2.

Task 1 results strongly indicate that the presence of even small amounts of
sulfur-containing compounds (<1 ppm) in hydrocarbon fuels (methane, propane, and
RP-1) can produce unacceptable corrosion of the cooling channels in copper chamber
liners. This corrosion increases the wall temperature and obstructs the coolant flow and
thus reduces chamber life and/or increases maintenance costs. It does not appear
feasible to circumvent the corrosion problem by reducing the wall temperature through
more conservative design. Currently, only completely sulfur-free fuel can be '
considered for reliable operation with bare, i.e., unprotected, cooling channels.

Comparative tests conducted in Task 2 with gold- and platinum-electroplated
copper cooling channels strongly indicate that very thin protective deposits of corro-
sion-resistant metals eliminates corrosion of copper cooling channels by sulfur-
containing impurities.

The objective of this program is to verify that fuels containing measurable
amounts of sulfur-containing impurities can be employed for cooling high-pressure
booster engines if a thin, protective, corrosion-resistant coating is applied to all surfaces
of the copper cooling channels. Figure 113 defines the general approach and program
logic. The program will be conducted in five tasks over a 36-month period, as shown in
the Program Schedule, Figure 114. Alternative fabrication techniques for applying the
protective coatings will be investigated and comparative tests will be conducted. After
selection of the best protective material and deposition process, two LO,/methane
thrust chambers will be fabricated and hot-fire tested to verify the efficacy of the
coatings in advanced booster engine service.
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5.1, Task 3.1—Program Plan Preparation (cont.)

Task 1 will select a suitable thrust level and set of operating conditions which
will adequately simulate the heat flux and cooling channel configuration of an advanced
booster engine. For planning purposes, we are recommending a 40,000 IbF thrust
LO;/methane engine configuration operating at a chamber pressure of 2500 to 3000
psia. A conceptual design will be created in sufficient detail to allow selection of the
cooling channel width and depth to simulate those of the larger booster engine, e.g.,
750,000 IbF thrust.

Task 2 will investigate three candidate fabrication techniques for applying
protective material to the cooling channels and will develop a suitable nondestructive
test method to assure complete, crack-free coverage. Figure 115 defines the scope of
work for protecting the three walls of the machined slots. Modification of the electro-
forming process may be required to protect the back side of the coolant channel prior to
applying the nickel closeout. Figure 116 shows two test methods which will be used to
test the closeout bond after application of a protective coating.

Task 3 will subject specimens made by the candidate processes to perfor-
mance and life simulation tests. The first subtask will be mechanical testing of coated
channels which will include pressure testing and simulated cyclic strain testing. The
objective of these tests will be to verify the structural integrity of a coated channel sys-
tem and to demonstrate that the coatings will tolerate the expected strain levels without
spalling, cracking, or other degradation. The second subtask will be thermal testing
using the Aerojet Carbothermal Test Apparatus. The objective of these tests will be to
demonstrate the ability of the coating system to resist corrosion by sulfur compounds
systematically added to pure methane. In these tests, methane containing a known
quantity of a sulfur-containing compound will be flowed through a coated copper
channel. Coolant channel conditions will be maintained for a duration of approximately
1000 sec, which is equivalent to six flights. The performance parameters will include
measurement of changes in heat transfer and pressure drop with time. The 12-test
program proposed is defined in Table 20. Posttest metallurgical inspection of each
tested section will be performed.

Task 4 will consist of a rocket engine demonstration using the thrust level and
operating conditions selected in Task 1. The task will be based on the use of an
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Fabricate 18 slotted copper plating process evaluation specimens
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— - = T
i Y
> |- Section for EFNi Plating L.
(Task 2.4) Wide Channel
Narrow Channel
L/D = 3 min, 10 max
Task Variables

+  Channel width and width to depth ratio

»  Coating process options select 2
— Aqueous bath
— Fused salt bath
— CVD
— Electron beam evaporation
— Other

*  Vendor Selection

»  Samples prepared for by 3 vendors for 2 materials,
Fabricate 3 samples for each process.
Sample required3x3x 2 =18

Process Evaluation Criterig -
Channel coverage in corners
Depth/width vs. uniformity
Bond quality

Local defects and porosity

Figure 115. Task 2.2 and 2.3: Protective Coating Process Development
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In addition to plating the 3 sides of the channel, it will also be necessary to plate
the protective material on the channel wax filler before the electroformed nickel

closeout is applied, as shown below.

Copper

Gold/Platinum Tensile
z / Nickel Specimen
ar
¢ o

The bond between the copper and the protective material must be evaluated. The
suggested test method is shown below. Forth-eight (48) tests will be conducted.

Bond Joint Test Method
Push Rod
Copper
EFNI Joint to be Tensile Tested

Figure 116. Task 2.4: Fabrication Experiments In Support of Closeout

M5/D1.8



sauag IEM ],

souag widd 01

souag wdd ¢

aureseq

Susuwio, )

006 wmugefd
006 PIoD
004 wmugerd
00Z PIoD
004 umuneld
00Z P1oD
00z JUON
004 umugeld
004 PO
004 SUON
TeMT 3uneo)

adl
adl

wdd o1
wdd o1

wdd g
wdd 7
wdd g

[PAI]

SCH
StH

STH
SCH

SCH
StH
SH
QUON

UON]
UON

SSADIPPYV

XTILVIN LSAL TVINITHIOFIVO A45OdOdd

0cd14dVL

Aouadunuo)
AouaBunuo)

JURYIPW
aueYoN

ueYIOW
aueyION

UeYId
EN ) AN
EI A 0E) A

dueISN
aueyIoN
dUPYIRN

°ondg

IT%590v00/ Lo

204



5.1, Task 3.1—Program Plan Preparation (cont.)

existing, well-characterized LO,/methane injector, Figure 117, and the modification of
an existing combustion chamber design, Figure 118, to provide the proper cooling
channel configurations. Two new thrust chambers will be fabricated using the best pro-
tective coaﬁhg material and deposition process that evolves from the experimental
activities of Tasks 2 and 3.

A 10-day hot-fire test program which simulates several full-duration flights
will be conducted. The initial checkout tests will be conducted with sulfur-free fuel to
verify the design and establish baseline performance characteristics of the chamber.
These will be followed by testing with fuel containing a TBD amount of sulfur-
containing compounds.

Task 5 is devoted to final data analysis and documentation.

A cost estimate for the program has been prepared and forwarded to the
NASA Program Manager under separate cover.
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Details of Fuel Cooled Face Using Our 40,000 IbF, 60 Element Swirl
Platelet Construction Coax Injector P/N 1188144 is
Stable, High Performing and
Thermally Characterized

/

log 88.870

log 88.8728

Fuel Cooled Nickel Face Plates
Assure Long Life and High Per-
formance

et ‘ ORIGINAL PAGE
AR BLACK AND WHITE PHOTOGRAPH

#

log 88.871

Figure 117. An Existing, Well-Characterized Injector Can Be Used For
Testing at 40,000 Ibf
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II.

AMPUL TEST
COPPER-HYDROCARBON COMPATIBILITY
PROPELLANT PREPARATION

Propellants Containing Dissolved Air

1.

Using a nitrogen pressurization and purge system, transfer pro-
pellant to a sample bottle.

In a fume hood, transfer propellant from the sample bottle to an
open flask.

Bubble air through the propellant in the flask for ~1/2 hour.

Make up the required test mixtures by adding the appropriate
amounts of contaminants to measured quantities of propellants.

Set aside a sample of each mixture for analysis.

Propeilants Without Dissolved Air

Using a nitrogen pressurization and purge system, transfer pro-
pellant to a sample bottle.

Under a nitrogen atmosphere in the glove box, transfer ~75 ml
propellant from the sample bottle to the degassing flask.

Close the degassing flask by 1nsert1n& a tubing section containing
a stopcock in the socket at the flask opening.

Remove the degassing flask and stopcock assembly from the glove box
and install it on the vacuum rack.

Pull a vacuum on the contents of the degassing flask for ~1/2 hour.

Remove the closed degassing flask and stopcock assembly from the
vacuum rack and place it back in the glove box.

Set aside a sample of each propellant for analysis.
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IT.

AMPUL LOADING

Propellants Containing Dissolved Air

Place any required metal specimen in the ampul,

In a fume hood, transfer 4.0 ml of the appropriate propellant
mixture from the storage container to the ampul using a syringe.

Using a torch, seal the ampul 6 in. from the bottom.

Place the sealed ampul in a protective sleeve and store the
assembly in a freezer until testing begins.

Propellants Without Dissolved Air

Place any required metal specimen in the ampul.
Place the ampul in the glove box.

Using a syringe, transfer 4.0 ml of the appropriate propellant
mixture from the storage container to the ampul.

Close the ampul by placing the open tygon tube end of a tygon
tube/stopcock assembly over the open end of the ampul.

Remove the ampul and stopcock assembly fyom the glove box and
install it on the vacuum-vack. :

Partially immerse the ampul in the LN, to freeze the propellant.
Pull a vacuum on the ampul.
Seal the ampul 6 in. from the bottom using a torch.

Place the sealed ampul in a protective sleeve and store the
assembly in a freezer until testing begins.
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10.
11.

12.

AMPUL UNLOADING

Allow the ampul to come to room temperature and remove any moisture
that may have condensed on the outer surfaces.

Install the ampul in the tygon tube section at the unloading port
on the vacuum rack.

Pull a vacuum on the manifold up to the sealed ampul.

Pressurize the manifold from the manometer to the ampul to approxi-
mately 1 atm with N, and record the pressure.

Close the stopcock at the manifold inlet to the ampul.
Break the top of the ampul.

Open the stopcock at the manifold inlet slowly. Let the pressure
equilibrate and record the equilibrated value.

Take gas samples for analysis by CG using the manifold sampling
septum.

Close the manifold inlet stopcock and the ampul inlet stopcock.
Remove the ampul stopcock assembly from the vacuum rack and place
it in the glove box. '

Disconnect the ampul from the tygonktube section.

Transfer the propellant from the ampul to a septum sample bottle
using a syringe. Submit the propellant sample for chemical
analysis.

Remove any metal specimen from the ampul and obtain specimen
weight, dimensions, 35 mm photographs, and SEM photographs.
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10.

BOMB TEST LOADING

Secure a prepared metal specimen on the sample holding rod.
Place the specimen/holding rod assembly in the pressure vessel.
Put the vessel closure in place and tighten it securely.
Calibrate the transducer on the pressure vessel.

Fi11 the pressure vessel with helium and perform a leak check.

Connect the pressure vessel to the gas handling system and evaluate
the vessel and the handling system.

Condense the appropriate quantities of propellants and contaminants
into the pressure vessel using P-V-T determinations and vacuum
transfer techniques.

Bring the vessel to ambient temperature and check the pressure.

Place the vessel in the furnace and install insulation over the
furnace opening between the instrumentation and the top of the
vessel.

Allow the vessel to come to the appropriate test temperature.
Vessel pressures above the desired test pressure can be adjusted to
the appropriate range by venting through a 1ine that exhausts to an
area remote from the furnace,

BOMB TEST UNLOADING

Remove the pressure vessel from the furnace.

While the vessel is still hot, obtain gas samples for analysis by
gas chromatography.

Cool the vessel and vent the propellant.

Remove the vessel closure and examine the inside of the vessel for
evidence of reaction.

Remove the specimen/holding rod assembly from the vessel.

Take the metal specimen off of the holding rod. Obtain the weight,
dimensions, a 35 mm photograph, and SEM photographs of the speci-
men.
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AEROJET TECHSYSTEMS COMPANY e

TEST OPERATIONS FAGE 1 o 4
ATP-TDO PREPARED 8Y
A-CARBOT-1000 CARBOTHERMAL W.E. Sobieralski 22 Sep 88
o CHEM BAY 5 METHANE N ‘/Z’J/],_;k"_‘l,( (ol
TEST NO. APPROVED
TEST N.A. SR
uNIT SN REFERENCE
INITIAL T
T.D. INSP OPERATION -
Index and ATP-TDO Change Letters and Revision Dates Verified.
1.0 Record specimen number » specimen size |
fuel used .
2.0 Zero and calibrate transducers, thermocouples and M.M,
3.0 Ensure that the CHy system is connected to test plumbing and check
that the RP-1 system is disconnected.
4.0 CLOSE all hand and remote valves.
5.0 Verify 6000 psig in methane cylinders.
_ 6.0 Set methane regulator outlet to ____psig.
7.0 Verify GN, supply valve for remote valves is NPEN.
8.0 Ensure sample bottle is attached to system.
9.0 Hook vacuum pump to HV-16. OPEN HV-16 and HV-15 and pull vacuum on
sample bottle.
. 0.0 CLOSE HV-16 and disconnect vacuum pump.
|1.0 OPEN HV-10 and RV-4,
2.0 Set GN, supply regulator to psig.
13.0 OPEN RV-3 and verify flowmeter working.
4.0 CLOSE RV-3 and RV-4,
15.0  Torque channel support bolts 2, 4, 6 and 8 to 140 in-1bs. Torque
edge support bolts to 60 in-1bs.
B-2




ATP-TDO A-CARROT-1000

PAGE 2 or 4

INITIAL

INSP,

OPERATION

16.0

17.0

18.0

19.0
20.0
21.0
22.0
23.0
24.0

25.0
26.0

27.0

28.0
29.0
30.0
31.0
32.0
33.0
34.0

35.0

36.0

OPEN RV-3 and pressurize system to 2000 psig and leak check
system.

CLOSE RV-3.

OPEN CHy supply valve and RV-2. Pressurize the system to 4000
psig. Leak check.

Once leak check is accomplished, vent pressure through HV-17,
Torque channel support bolts 2, 4, 6 and 8 to 80 in-1bs,

OPEN HvV-17.

OPEN RV-4,

OPEN RV-3 and adjust GN, su§p1y regulator to desired flow rate.

OPEN main LN, valve (at tank), secondary LN, valve and bypass I N,

valve,
OPEN cooling water valve HV-19.

Give 10 minute warning.

OPEN HV-18 GN, purge to waste drum and HV-20 GNp. Purge to test
block,

Put cover on box. ,

Turn GN, purges on to electrical boxes.

Turn overhead blowers ON.

Verify heater control box plugged in.

Begin data.

Turn 440 main breaker ON.

Turn heater main switch ON.

OPEN HV-11, HV-12, HV-13 and HV-14,

CLOSE HV-10 and RV-4,




ATP-TDO A-CARROT-1000

PAGE 3 OF 4

INITIAL

7.D.

INSP.

OPERATION

37.0

42.0

43.0

44,0

45.0
46.0
47.0
48.0
49.0
50.0
51.0
52.0
53.0
54.0
55.0

56.0

57.0

58.0

Turn control panel heater switch ON and begin adjusting temperature

with potentiometer to desired temperature.

OPEN methane valve valve at cylinder regulator.

Give 5 minute warning

CLOSE RV-3 and immediately OPEN RV-2,

Use HV-17 to adjust back pressure to 1000 psig and watch for any
abnormalities (if filters begin to clog - OPEN RV-4).

Run methane for approximately seconds.

OPEN RV-5 and take sample of methane at seconds into

test.

When test duration is completed CLOSE RV-2 and immediately OPEN RV-
3.

OPEN HV-17 all the way.

Turn heaters OFF and begin cool down,

Turn bay heater switch OFF on 440 breaker.
Clear bay to authorized personnel only.
CLOSE methane valve at regulator

OPEN HV-32, cooling water to block.

CLOSE LN, bypass valve and secondary LN, valve.
CLOSE sample bottle valve.

Re-restrict the bay to all personnel,
CLOSE main LN2 valve,

When the block reaches 500°F, vent remaining methane through RV-?2.

End data.

When the block reaches 200°F, clear bay to all personnel.

Turn blowers and 6N, purges OFF,

B-4 -



ATP-TDO A—CARBOT-!OO(‘
PAGE 4 o 4
INITIAL T
OPERATION
T.D. INSP, —
59,0 When block cools, remove specimen,
60.0 Remove sample bottle.
61.0 Remove and lahel filter elements,
62.0 Secure facility.
T.D. DATE
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DYNAMIC TEST DATA REDUCTION PROGRAM
LISTING AND SAMPLE OUTPUT
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ORIGINAL PAGE IS
OF POOR QUALITY

DESCRIPTION !

L
Added ability to do sethane calcs ¢
Revised ch4 correlations for '

viscosity and thermal conductivitys
Added ters to head loss calc. !
find to Nusselt nusber calc. ]
Revised Cp coefficient for methanet
replaced su correlation with cubict
spline for methane

Creation of datared? : for calc.

2" channel specimens.

htdT} now based on corrected wall ¢
tesp -~ not direct TC reading.

Now print predicted Nu and seasured Mu
instead of h(Nu) and hidT},
wall temperature.

Added Nuexp/Nupred coluan

Print se3n corrected

fdded Propane correlations
Created dataredd to process data from
*carbo.bas" -- tise channel at end.

10 ({11108 80ERa8E]E281)
20 '¥ dataredd t
) Rt IREITEs T EaiTRt]Es
L} ’ Progras to read Fastdat data
30 and do carbothersal calcs.
60
10
80 IREIAEEIR SRR LARARERIRIRREEEAELEREIRTEPRRTILETURERNEERNERBUREIVRLENLRLENETIAREINRNINILY
90 T RV DATE PROGR.
100 T 100 09/13/87 algage
110 t 101 11/20/87 alg
120 "t 102 12/04/87 slg
130 g
1w 't 103 12/09/87 slg
150 t
AW 01/04/88 alg
60 ¢
‘n
‘v .08 01/11/68 alg
1
t 106 02/08/88 alg
t
L7 02/11/68 alg
‘t
‘s
"t 1.08 02/22/88 nlg
t
+ L0 02/24/88 alg
‘L1 09/22189 alg
R
t
s
R
i
‘t

DIN invar(20), twall{4)

Main:
GOSB init
6098 getfile
6058 fopen
60SUB setmask
BOSUB docalcs
GOSUB fclose
GOSUB endit
END

init:
WIDTH LPRINT 235
wid = .02
fuel$ = "
false = 0: true = |
ver$ = “1,10"
comsa$ = ","
psetups = CHR$(27) + "N* + CHRS$(13)
alldashes$ = **
FOR 1 =1T0 240
alldashes$ = alldashes$ + "-*
NEXT |

SORLEERETEREENERRERRERREEREREERTENEEREARERREIRERIIBTORIENRIRIROIURSERERDERITRLLLNLELIRLINLS



(s

PRINT titlel$; TAB(46); titles
"LPRINT psetup$

RETURN

setrunvars:
IF MID$(runs, L, 1) = "a" QR NID$(run$, §, 1) = "M* THEN fuel$ = “methane”
IF MID$(runs, 1, 1) = "r" OR NIDS{run$, 1, 1) = "R" THEN fuel$ = *RP-1°
IF NID$(run$, 1, 1} = "p" OR MID${run$, L, 1} = “P" THEN fuel$ = "propane”
stime = VAL(stimes)
etise = VA (etines)
leng = VAL{leng$)
titlel$ = ™"
title2s = "Dataredd vs. * + vers + SPACES(10)
title2s = title2s + "channe]l length = * + leng$
lineno = |
RETURN

getfile:
hdrfiles = "hfile.dat"

‘LOCATE 11, 25

"INUT "Enter Run Nusber: *, run$
"LOCATE {2, 25

"INIT "Enter Run Date: ", rdated
"LOCATE 13, 25

"INPUT "Data file name: ", infile$
‘LOCATE 14, 25

"INPUT "Output written to: *, outfiles
"LOCATE 15, 25

"INPUT “Start tise: ", stise$
"LOCATE 16, 25

"INPUT “Ending time: ", etise$
RETURN

fopen:

PEN hdrfiles FOR INAUT S B3
RETURN

openrunfile:
runfile$ = "c:\lang\gb\data\” + run$ + *.PRN"
outfile$ = run$ + ".out”
OPEN outfiles FOR QUTPUT &5 #2
_ OPEN runfile$ FOR INPUT AS &I
RETURN

docalcs:

" data starts with channe] 41, each seperated by a comsa
" we want to keep channels 46,47,65,66,71,74,75,74,77 81,85,
" and seperate each field with a comsa.

LOCATE 14, 5

PRINT “On Run Nusber: " -3
LOCATE 17, 55 -
PRINT "Warking an Time: "

ORIGINAL PAGE i
OF POCR QUALITY



WHILE NOT EDF(3)

INPUT 83, run$, rdate$, stime$, etime$, lengt

iF NID$(runs, 1, 1} = =" THEN GOTO skipfile

LOCATE 14, 92: PRINT runs
G0SUB openrunfile
GOSUB setrunvars
WHILE NOT EOF (1}
LINE INPUT #1, inlines
outlines = **
start = |
i=l

skipchannels = 5: GOSUB fetchannel
skipchannels = 0: 60SUB fatchannel
skipchannels = {7: GOSUB fatchannel
skipchannels = 0: GOSUB fatchannel
skipchannels = 4; GOSUB fatchannel
skipchannels = 2: GOSUB fetchannel
skipchannels = 0: GOSUB fatchanne]
skipchannels = 0: 60SUR fetchannel
skipchannels = 0: GOSUB fatchannel
skipchannels = 3: GOSUB fatchannel
skipchannels = J: GOSUB fatchannel

GOSUB readvars

&%
v
K
"b6b
]
‘T
RA
‘76
mn

‘8l
‘89

LOCATE 17, 52: PRINT USING "HM"; time

GOSUB chektime

IF timeok = false GOTO skiptime

GOSUB cpressavg
GOSUB ctavg
GOSUB setcoetts
GOSUB ccsubp
60SUB crho
60SUB cvisc
BOSUB ck

60SUB cqfluid
GO5UB chilux
GOSUB ctw
GOSUR cvel
GOSUB cRe
60508 cPr

GOSUB chupred
60508 cdP
GOSUB cif
GOS8 crough
6098 chfromiu
GOSUB cNuexp
60SUB cNuratio
GISUB printline
‘PRINT 42, outline$

skiptimes

KN
CLOSE #
CLOsE #2

skipfile:

WEND
RETURN

fatchannel:
FOR | = 1 TO skipchannels

c-4
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cossaspot = INSTR(start, inlines, commas)
start = commaspot + |
NEXT |
length = INSTR(start, inline$, comsas! - start
IF length < 0 THEN length = LEN(in]ine$) - start
IF LEM(outline$) > | THEN GOSUB mostchan ELSE GOSUB firstchan
start = INSTR(start, inline$, commas) + {
i=isl
RETURN

sostchan:
outline$ = gutline$ + *,* + NID$(inlines, start, length)
temp$ = MID$(inlines$, start, length)
invar{j} = VAL(temps$}
RETURN

tirstchan:
outlines = HID$(inlines, start, length)
teag$ = HID$(inlines, start, length
invar(j) = VAL (teap$}
RETURN

readvars:

time = invar(1{}

pressin = invar(1)

pressout = invar(2}

tin = invar(3}
IF (fuel$ O “RP-1°) AND (run$ O "a207*) AND (run$ > *a208") AND (tin ) 0) THEN tin = -tin
IF run$ = “pl0S" THEN tin = invar(d)

tout = invar(4}

tblock = invar(5)

twall{l} = invarts)

twall(2) = invar(7)

tmall{3} = invar(B)

twall(4) = invar(9)

nassflow = invar(10)

FRI=1LT04
IF twall(1) ) 1500 THEN twall(I} = twall{l) / 10

NEXT |

RETURN

chektioe;
tiseok = true
IF tine ¢ stise THEN timeok = false
IF tise ) etime THEN timeok = false
RETURN

cpressavg:
pressavg = (pressin + pressout) / 2
RETURN

ctavg:
tavg = {tin + tout) / 2
RETURN C-5



setcoeffs:

IF fuel$ = "methane" THEN GOSUB methcoef OR'G"‘JAL PAGE !S
IF fuel$ = “RP-1" THEN GOSUS rpcoef

I fuld - *oropane® THEN GOSUB propcoe OF POOR QUALITY
RETURN

CEOBIRERRERERERLAEREAENARERRORERTRIRORERIRERSEBEACARNENENEILRRIRIRERERIRERTREITRENTROLEOLILLE

nethcoef;
sethcp:
€0 - ¢J are for heat capacity
IF pressavg > 1500 THEN GOTG methcp2
c0 = .738: cl = -.00614
€2 = 7.2956-05: 3 = -2.262-07
6070 sethrho
sethcp;
IF pressavg > 2900 THEN 6070 methcpl
¢0 = 1.039: ¢l = -.0021]
€2 = -.0000143: 3 = 8.2%6-08
GOTO sethrho
sethcpd:
c0 = .892: ¢l = -.000293
c2 = -,0000054: cJ = 2,53%-08

sethrho:
'rd - r3 are for rho
IF pressavg ) 1500 THEN 60T sethrho?
r0 = 4,182: rl = -.0655
r2 = 000407 r3 = .000122
BOTO eethk
sethrho2:
IF pressavg > 2900 THEN 60TO methrha3
r0 = 10.135: rl = -.0633
r2 = ,000175: r3 = 6,23-07
6070 sethk
sethrhod:
r) = 15.586: rl = -.0473
r2 = ,0034: r3 = 139607

sethk: R
k0 - &3 are for thera cond
IF pressavg > 1500 THEN 6070 sethk?
k0 = .02002: ki = -.0001054
k2 = |,063-06: k3 = 2,2%-10
GOTO sethau
sethk2:
IF pressavg > 2500 THEN 6070 methk3
kO = 03431: kI = -.0001344
kZ = 7.581€-07: &3 = 1.256-10
6070 sethey
methk:
kO = .04169: k1 = -.0001321
k2 = 6.612-07: &3 = -2.%-11

sethau:
'v0 - ¥ are for viscosity
IF pressavg ) 1300 THEN 60TD setheu2
IF tavg > -160 AND tavg  -60 THEN
v0 = -7.75E-13: vl = 1 ASTE-09: v2 = -3,B37E-07: 3 = 0000327
ELSELF tavg > -40 AND tavg ¢ 40 THEN C-6
v0 = -4.BSTE-12: v1 = 1,229E-09: v2 = -7.4486-07: v = 8,13E-04



sethau?:

wethaul:

methrin:

RETURN

ELSEIF tavg > 40 AND tavg ¢ 140 THEN

v0 = TA33E-13: vl = -2.32%-10: v2 = 2.4926-08; v3 = 8.0%-0b
ELSEIF tavg > (40 AND tavg ¢ 240 THEN

v0 = 7.43E-13: vl = -9.5€-12: v2 = J.07E-10: v3 = B.9%-06
e IF
GOTO sethrtn

[F pressavg > 2500 THEN 60T0 sethmu

[F tavg > -160 AND tavg ¢ -60 THEN

v0 = B7HE-(3: vl = L. 34E-10: v2 = -2.54607: v3 = 0000372
ELSEIF tavg > -60 AND tavg ¢ 40 THEN

v0 = ~LARE-12: vi = 6.95E-10: v2 = -1.18E-07: v = .000017
ELSEIF tavg > 40 AND tavg ¢ 140 THEN

v0 = -7.708€-13: vl = 2.6(3E-10: v2 = -2,2426-08: v3 = ,0000107
ELSEIF tavg > 40 AND tavg { 240 THEN

v0 = -7.768€-13: vl = JE-11: v2 = 6,708E-09: v3 = 0000103
END IF
GOTO sethrtn

IF tavg > -160 AND tavg ¢ -40 THEN

v0 = 9.042%-13: vl = 3.538E-10: v2 = -,0002434: vJ = 0000408
ELSEIF tavg > -60 AND tavg < 40 THEN

v0 = -L 1B-12: vl = 6.25E-10: v2 = -1 247E~07; v = 0000209
ELSEIF tavg ) 40 AND tavg ¢ (40 THEN

v0 = -6, 08Z-13: vl = 2.713E-10: v2 = -3,508E-08: v3 = .0000135
ELSEIF tavg > 140 AND tavg ( 240 THEN

v0 = -6, 042-13: vl = E-[1: vZ = 1.04ZE-09: vI = 0000121
END IF

HREBTERERBRRARERSRLRLOEATARITIRIRIEIEICTERLOLTEIRERIUTRBURORRRBRRERSRIRERTNSERERLIITILIEILILIANL

rpcoef:

‘c0 - c3 are for heat capacity
cd= .4
cl = .00089
2 = -1.6%-0
o3 = L2%-R

'rQ - r3 are for rho
r0 = 5l.72
ri = -.024
r2 = | 197604
r3 = | 4907

k0 - k3 are for thers cond
k0 = 0886
ki = -2.786E-05
kZ = -7.B6E-08

k3 = 1.429€-10

'v0 - v3 are for viscosity
v0 = 001769
vl = -1.2T%~05

v2 = L.TE-08

vl = -39

RETURN

TERIRBERRERERTRERRORRRRTRERTURRENTREREBERERTILITILRLIBINILILIEIRIRREREETRIRTNLLL

propcoef:

propep:

"0 - 3 are for heat capacity

IF pressavg > 750 THEN 60TQ propep?
¢ = ,S6éd: cl = .0006193
€2 = 2.346-06: 3 = 2,067E-08
GOTO oroprhe



propep:

propepd:

proprhe:

proprho;

proprhod:

proprhod;

propk:

propk?:

propkd:

propkd:

propm:

0roomu?s

IF pressavg > 1500 THEN GOTO propcpl

0= 3593 cl = 0005397 ,
2« L6t <3 = 1 6008 ORIGINAL PAGE is
G070 proprho OF_ POOR QUAL'TY

IF pressavg > 2500 THEN 60TO propcpd
c0 = .589: cl = ,0003778
€2 = ,0000011: ¢3 = 7.167E-10
GOTO proprho

o0 = S47: cl = 000329
c2 = 8.6€-07: 3 = -9E-10

‘r0 - r3 are for rho

IF pressavg ) 750 THEN GOTO proprha?
r0 = 335: rl = -.0002781
r2 = -5.090€-07: r3 = -4, 47E-08
GOTQ prapk

[F pressavg > 1500 THEN 6OTO proprhol
r = .3602: rl = -,0006086
r2 = -4, 83E-07: 3 = -8.4{9%-0F
6070 propk

IF pressavg > 2500 THEN 6010 proprhod
r0 = ,596: rl = -,0003832
r2 = -2,.%-07: r3 = -1, 38%-09
6070 propk

r0 = 5774 rl = -,0005488
r2 = -1.3%07: r3 = -b.666E-10

k0 - k3 are for thera cond

IF pressavg > 730 THEN 6070 propk?
k0 = .0671: k1 = -,0001544
k2 = 2.43E-07: k3 = -1. 266607
60T0 propeu

IF pressavg > 1500 THEN GOT0 propkd
k0 = .0689: kI = -,0001805
k2 = J,086E-07: k3 = -4.612€-10
6070 propau

IF pressavg ) 2500 THEN GOTO propkd
k0 = .0717: k1 = -,0001648
kZ = 3.17%-07: k3 = -1.582%-10
6070 propmu

k0 = ,0744: kI = -.0001812
k2 = J.62%-07: &3 = -3.M3E-10

'vQ - v3 are for viscosity

IF pressavg > 750 THEN GOTO propau?
v0 = ,000103: vi = -5.896€-07
v = 23109 v3 = -8.89%-12

6070 proprin C-8



IF pressavg > {300 THEN 6070 propmud
v0 = .000109: vl = -6, 26307
v2 = 24509 v = -5.647E-12
6070 proprin

propaul:
IF pressavg > 2500 THEN GOTO propaut
v = ,000118: vl = -6.6826-07
v2 = 2.99%E-0%: v3 = -5.28%-12
G0TD proprtn
propmud:
vl = ,000127: vl = -6.6878E-07
v2 = L.TE-09: v3 = -5.747E-12
proprin:

RETURN

AEEENSIALIRRERRERRERERERBERERACRBEERREALILETITELALRIRALIETALOLOCASEIALALIRILIE

ccsubp:
‘calc Cp, BRU/IbF
csubp = cO +cl ¢ (tavg) #c2 ¢ (tavg * 2 + T 8 (tavg * )
RETURK

crhos
‘talc rho, g/cc
rho = (r0 ¢ rl 8 (tavg) ¢ r2 8 (tavg * 20 + r3 & (tavg * 3)) / 62.4
IF fuel$ = "propane® THEN rho = (r0 + rl # {tawg) + r2 8 (tavg * 2) ¢ 3 & (tavg ~ 31
RETURN

cvisc:
" calc viscoeity, lb/ft-s
IF {uel$ = “sethane” THEN GOSUB vforal ELSE GOSUB vfore?
RETURN

vioral:
visc = v0 § ({tavg - t0) " 3} + vl ¢ ((tavg - t0) * 2) + v2 ¢ (tavg - t0) + 3
RETURN

vioraZ:
visc =v0 + vl # {tavg} + v2 8 (tavg * 2} + V3 8 (tavg " T)
RETURN

ck:
‘talc thersal conductivity, BTU/ft-hr-F
kak0+ki®itavgl + kZ # {tavg " 2) + k3 ¥ (tavg * 3}
RETURN

cafluid:
" heat into fluid, kwatts
qfluid = sassflow 3 (tout - tin) & csubp ¢ 1.055 / &0
RETURN
chilux;
" heat flux based on a wid x wid channel
* BlU/s-in2
hflux = qfluid / (3 ¢ wid # leng ¥ 1.055)
RETUN

IF leng ¢ 3! THEN
tw = ((buall(D) + tuall(3)) 7 20 - (1,652 ¢ Mlux)

ELSELF leng )= 3' THEN c-9
tw = (Tewal 0D + twall(2) + twallt3) + twallth)) 7 &3 - {1,852 ¢ hilux)
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FOLDOUT FRAME
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cdP:

418

crough:

chirombu:

chuexp:

cMuratio:

printline:

dopacehead:

g=-.38
h= .24 o
RETURN RIGINAL PagE
- 'S
OF POOR QUALITY
* Channel delta P

tdP = pressin - pressout -

los = (154 1.2) 8 (rho ¢ 62.4) tvel * 2/ (243224 140)" 1.03 added 1.2 ters to account for 2 90 degree bends
dP = tdP - los

RETURN

" Moody friction factor

IF (dP ¢= 0) OR (vel <= 0) OR {rho (= 0) THEN £ = 0: RETURN

$H=2832.20 (wid /1) ¢ P ¢ 144/ (ivel *2) 8 tleng / 12} 8 (rho ¥ 62.4))
RETURN

" Roughness of charmel based on #f.

* units: micro-inches.

[F (£ <= 0) OR (Re (= 0) THEN rough = O: RETURN

rough = 3.7 8 {10 ~ (-1 / (2 8 SQRIDD) - 2.51 / (Re § SOR($£))) ¥ wid ¢ 1000000
RETURN

* heat transfer coefficient based on Nusselt number.

* unitss BTU/s-in2F

hroaNu = Nupred § k / (wid / (20 § (1 / 36000 % (1 / 1)
RETURN

* heat transfer coefficient based on delta T.
" units : BTU/s-in2F

hiroaT = Mlux / (tw - tawgl

Noexp = (hiromT § wid / k) § 3600 § 12
RETURN

IF Mupred = 0 THEN Nuratio = 0: RETURN
Nuratio = Nuexp / Nupred
RETURN

IF lineng > 56 THEN lineno = |

IF linena = | THEN GOSUB dopagehead

IF lineno MOD L0 = O THEN BOSUB doseperate
60SUB dol ine

RETURN
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FOLDOUT FRAME

vel, gfluid, htlux, Re, Pr, Mupred, tdP, les, dP, #f, rough, Nupred, Nuexp, tw, Muratio
*avg, csubp, rho, visc, k, vel, gfluid, hflux, Re, Pr, Nupred, tdP, los, dP, 4, rough, Nupr






setmask:

plined$ = plined$ + "N + SPACE$(S)
plined$ = plined$ + "twall® + SPACE$(3)
plinel$ = pline3$ + “Nuexp/*

plined$ = * sec” + SPACES(3)

plined$ = plined$ + "psi® + SPACES(Z}
plineds = plined$ + “psiq™ + SPACES(S)
plined$ = plineds + "F" + SPACES(7)
plined$ = plined$ + “F* + SPACE$(4)
plined$ = plined$ + “F* + SPACES(7)
plined$ = plined$ + "F* + SPACES(?)
plined$ = plined$ + *F* + SPACES(T)
plined$ = plined$ + *F* + SPACES(7)
plined$ = plineds + *F* + SPACES(S)
plined$ = plined$ + *¥/an" + SPACES(3)
plined$ = plined$ + "psi” + SPACES(T)
plined$ = plined$ + "F* + SPACES(3)
plined$ = plined$ + "B/8-F" + SPACES(9)
plined$ = plineds + *#/f-s" + SPACES(A)
plineds = plineds + "B/h-f-F* + SPACES(S)
plined$ = plined$ + “fps® + SPACES(3}
plineds = plineds + "k + SPACES(D)
plined$ = plineds + “B/si* + SPACE$(29)
plined$ = plined$ + *psi® + SPACES(2)
plined$ = plined$ + “psi* + SPACES(3}
plined$ = plined$ + *psi® + SPACES(1S)
plined$ = plined$ + "uin" + SPACES(2)
plineds = plined$ + “predict” + SPACE$(3)
plined$ = plined$ + “exper® + SPACES(3)
plined$ = plineds + “{cor)* + SPACES(3)
plineds = plined$ + "Nupred”

pline3$ = ™"

RETURN
masks = "*
nask$ = mask$ + ‘M - " tine
8ask$ = saské + "HH " " pin
Rasks = mask$ + "HEE " " pout
sask$ = mask$ + "HBNE.E ° * tin
#asks = masks + "MD" " tout
neskd = aasks + “HMLE " thlok
nask$ = sasks + "HH.I * " twalll
sask$ = aaskd + "HH.4 ° ’ 2
aasks = sasks + "HE.E * ! 3
sask$ = masks + "ML ° ’ 4
sask$ = aaskt + S0 ¢ " masstlow
aask$ = masks + "HH ' " pavg
sask$ = mask$ + "Ht * " tavg
aask$ = masks + "4, 8¢ * “Cp
nask$ = masks + “§.4H " rho
mask$ = sask$ + "B M 0 ‘m
aask$ = aask$ + "M " "k
sask$ = mask$ + "$H ° " Vel
aask$ = sasks + ‘.4 " "Q
mask$ = mask$ + ‘HL.} * "q"
mask$ = mask$ + "M 0 ‘Re
sask$ = mask$ + .M " Pr
aash$ = mask$ + "HEEL " " Ny
sask$ = mask$ + "$4H¥ " TdP
8ask$ = mask$ + “HH - " los
83sk$ = aasks + "NENE " ‘P
aask$ = mask$ + “§AHEAAS 0 R
aask$ = mask$ + "M " ‘e
nask$ = mask$ + "HIER G " M (pred)

mask$ = masks + "ERRE.E " " Ny fexp!

“tin

‘Thlack
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nask$ = sasks + “HH} " " twall corrected
sask$ = mask$ + "ML " Nulexp) Mulpred)

RETURN

tclose:
CLOSE &1, #2, &3
RETURN

endit;
LOCATE 20, 25
PRINT "ALL DONE®

‘PRINT #2, CHR$(12):

RETURN

‘LPRINT CHR$(12)
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